Crimen y castigo en Argentina: Un enfoque empírico

Andrés Chambouleyron
IERAL- Fundación Mediterránea &
Universidad Nacional de Córdoba

Manuel Willington
IERAL- Fundación Mediterránea &
University of Pennsylvania

(051) 726525 / 6325
Juan del Campillo 394, Córdoba (5001)
e-mail: ieeracba@satlink.com

Abstract

El presente trabajo estima el modelo econométrico del crimen utilizando como datos los delitos contra la propiedad cometidos en la veinticuatro provincias argentinas durante los años 1982, 1985, 1988, 1991 y 1994. La razón de usar delitos contra la propiedad es dual: por un lado son delitos que a priori deberían ajustarse mejor a la lógica del modelo económico del crimen ya que responden a un análisis racional de costo beneficio, y por otro lado usar datos por tipo de crimen y no agregados ayuda a eliminar dos sesgos importantes en este tipo de modelos: el sesgo originado por la diferencia en la tasa de denuncia y el originado por la diferencia en la tasa de culpabilidad de los diferentes delitos. En la medida en que las diferencias en tasas de denuncia y culpabilidad no varíen geográficamente o con el tiempo, un modelo de efectos fijos podría solucionar el problema pero ello implicaría un supuesto demasiado fuerte. Un modelo con datos por tipo de crimen ayuda a eliminar ese sesgo potencial. Además se eliminan otros dos sesgos importantes: los producidos cuando se estudia el impacto disuasivo diferencial entre el arresto y la condena ceteris paribus que toma las tasas de condena y de encarcelamiento constantes. Esto implicaría asumir que al aumentar los arrestos los jueces condenan a una tasa constante lo cual sesgaría hacia arriba el impacto marginal del arresto. Similarmente ocurre con las condenas y las condenas efectivas. Los resultados confirman las predicciones del modelo económico del crimen y se demuestra que luego de eliminar los sesgos la diferencia entre los efectos disuasivos del arresto y de la condena desaparecen.

Clasificación JEL K42
Crime and Punishment in Argentina: An Empirical Approach

Andrés Chambouleyron
IERAL- Fundación Mediterránea &
Universidad Nacional de Córdoba

Manuel Willington
IERAL- Fundación Mediterránea &
University of Pennsylvania

Abstract

In the present paper we test the criminometric model on property crimes (i.e. car theft and burglaries) using a panel data spanning five years and twenty four provinces in Argentina. The reasons to use property crimes are two: First of all, property crimes are those that better fit the logic of criminometric models; second, by using specific crime rates instead of aggregate ones one can get rid of two important biases that usually plague empirical studies of this sort, the one caused by the differences in reporting rates among different crimes and the other one caused by the different culpability rates of crimes.

It is widely known that people tend to report different crimes at different rates, if this difference varies across crimes using aggregate crime rates will generally produce biased estimates of the coefficients (variations across provinces could be expected to be captured by the fixed effects). Furthermore, there are crimes whose authors can be easily identified and caught (i.e. rapes) but others not so (car theft). If the structure of crimes varies across provinces, the use of aggregate crime rates may generate a biased coefficient of the probability of arrest defined as number of arrests divided by number of crimes. By using specific crime rates one can control for these effects and generate unbiased estimates.

To separately identify the deterrent effects of justice on one hand and the police on the other, three separate regressions are run: The deterrent effect of a more effective justice system is determined by the coefficient of the probability of conviction variable (# of convictions / # of arrests) keeping the probability of arrest constant whereas the deterrent effect of police is determined by the coefficient of the probability of arrest assuming that the judiciary will keep the number of convictions per inhabitant constant. The results confirm the predictions of the economic model of crime.

JEL Classification K42
Introduction

Ever since Gary Becker’s (1968) paper on crime and punishment a myriad of empirical estimations of the economic model of crime have been tested and confronted with the theory not always rendering satisfactory results.

The economic model of crime set forth by Becker (1968) asserts that a criminal commits a crime only if the expected benefits from doing so exceed its costs. Since criminals are utility maximizers and utility is a function of wealth, criminals will purport their acts only if doing so contributes to the maximization of their expected utility level. Obviously the decision to commit a crime will depend on the probability of being caught and the various benefits and costs associated with the act. Whether the crime will be committed or not depends on the individual’s perception of these factors and his attitude toward risk.

Building upon Becker’s model, the usual crime model materializes the trade off between benefits and costs in the following way\(^1\),

\[
E(U) = P \cdot U(W_0 - L) + (1 - P) \cdot U(W_o + B)
\]

The individual starts off with a wealth level of \(W_o\) which give him a utility level of \(U(W_o)\). The expected utility of committing a crime is given by (1) where \(P\) is the probability of being convicted and \(L\) is the monetary value of the loss incurred if incarcerated (legal wage foregone, lawyer fees etc.) and \(B\) is the potential loot if not caught. Evidently the more risk averse the individual is the more he will prefer the safe current wealth level \(U(W_0)\) to taking the lottery (1) and running the risk of ending up in jail. Notice also that the probability of conviction \(P\) will depend on the resources devoted to the police and justice departments, the number of convictions currently being handled by the courts and possibly on the number of jail inmates.

\(^1\) For more details see Eide (1994)
From (1) it can be easily seen that an increase in the probability of conviction reduces the expected utility and

$$\frac{\partial E(U)}{\partial P} = U(W_0 - L) - U(W_0 + B) < 0$$

and

$$\frac{\partial E(U)}{\partial L} = -P U'(W_0 - L)$$

an increase in the potential loss if caught also reduces the expected utility level. At the same time an increase in the potential benefit of committing the crime (loot value B) increases expected utility and the likelihood of the crime increase.

The model above does well in explaining the trade off between committing the crime (taking the lottery) and not committing it but it does not fare well when a person can split his time between legal and illegal activities. More recently models have been developed that allow any individual to allocate time among different activities. Pioneered by Erlich (1973 and 1996) this type of models permits the derivation of a supply of crime function that relates the time devoted to illegal activities as a function of costs and benefits in both activities and also as a function of crime deterrent variables such as expenditures in police, education and justice. In these models the time devoted to illegal activities can be proxied by the aggregate crime rate of a city and thus relate it with crime deterrent variables and socioeconomic variables such as wages, per capita GDP, unemployment, literacy rate, etc. (See Cameron 1988).

Empirical estimations of the economic model of crime

Several papers have dealt with the estimation of a supply of crime as a function of socioeconomic variables, deterrent variables such as the probability of conviction, probability of arrest, number of policemen on the streets, etc. (equation 4) but few have used panel data to deal with fixed idiosyncratic effects of different localities. Fixed effects are important because crime rates tend to be highly correlated with variables such as
education, poverty, unemployment or the local justice and police systems, variables that may remain constant for long periods of time and can be picked up easily by the fixed effects model.

(4) \[\text{Crimes} = \text{Crimes (reward, probability of success, opportunity costs)} \]

Only two papers have dealt with the empirics of crime in Argentina, Navarro and Chambouleyron (1997) and more recently by Kessler and Molinari (1997). In both papers the aggregate crime rate (all crimes) of province \(i \) at year \(t \) is regressed on several socioeconomic and deterrent variables obtaining reasonably good results and corroborating the predictions of economic model of crime: unemployment and poverty tend to increase crime rates while variables such as higher arrest and conviction rates tend to deter criminals.

It is important to note however that these models use aggregate crime rates measured as the total number of crimes (of any nature) and that the reporting rates of different types of crimes tend to vary significantly. Reporting rates of murders tend to be high while reporting rates of rapes tend to be low and this can be a source of bias in empirical estimation. Econometrically speaking, if reporting rates do not vary substantially across provinces or across time this potential bias can be taken care off by the fixed effect (provincial or temporal) but there is no a priori reason to be completely certain that this will be the case.

The second source of bias in models that use aggregate crime data is the one caused by differences in the culpability rate. Different crimes, due to their different nature, tend to help authorities identify the authors more or less easily. In a rape, if the victim reports the crime, she also reports the criminal, whereas in a house burglary the burglar most of the times will never be identified. In empirical papers dealing with Argentine data, arrest ratios or probabilities of arrest are computed as the number of crimes with identified potential author over the total number of crimes. Using aggregate crime data (rapes and house break-ins) will bias the estimate of the probability of arrest. The whole idea of running these regressions is to know the marginal impact of variables such as a higher

arrest ratio on the average crime rate, but a higher arrest ratio may be due more to a higher than average proportion of rapes in a particular year / province than a more effective police work. If the composition of the aggregate crime rate does not vary substantially over provinces or time this problem can also be accounted for by the fixed effect but again there is no certainty that this will be the case.

The problems mentioned above can be easily tackled using data for one type of crime but another problem arises. Data on crime in Argentina are grouped by nature in several groups: crimes against the honor, crimes against persons, economic crimes, crimes against freedom, property crimes etc. If the characteristics of crimes belonging to each group differ we face the same problems as before. We decided to use property crimes for two reasons: all crimes belonging to that category seemed homogeneous in terms of reporting and culpability rates (thefts, burglaries etc.) and second, this type of crimes should be the ones committed for economic reasons and should fit the economic model of crime better. Whereas other crimes such as rapes or race based crimes are more "irrational" in the sense that they cannot be explained by a benefit-cost analysis.

Lastly, we test the differential effect of a marginal variation in the arrest and conviction ratios on the crime rate. If arrests increase, keeping the conviction ratio constant will probably bias the arrest ratio coefficient upward. This is because as arrests increase courts become overloaded and judges convict fewer criminals. We solve this problem by allowing the conviction ratio to decrease using a proxy variable (sentences per capita). Likewise, if conviction rates increase it is not correct to take the effective conviction rate as constant because as jails become crowded judges will tend to send fewer criminals to correctional facilities. We solve this problem by allowing the effective conviction rate to vary using effective sentences per capita as a proxy variable for the effective conviction rate.

The model

As expressed in previous section, the economic model of crime treats the criminal activity like any other, with the participation decision being a function of its expected costs and returns. As stated by (4), the decision of committing a crime or not is a function of its reward, the probability of success, its costs in case of being caught, the returns of alternative activities, etc.
In empirical papers, a linear version of equation (4) is usually estimated and coefficients on probability of conviction interpreted as deterrence effects. In this paper, we try to discriminate among the deterrence effects of being arrested by police, of being sentenced by judges, and of being effectively convicted.3

To do so, we assume that there are several stages in the process of conviction - represented in Figure 1- and that the deterrence effect of each stage depends on what is perceived to occur on the following nodes (i.e.: the deterrence effect of being arrested will depend on the probability of being found guilty).

The first node represents the individual decision of committing a crime or not and it is assumed to be a function of the individual’s opportunity cost, the reward, and the potential punishment. The second one represents the probability of being arrested, the third one that of being found guilty given the arrest and the last one the probability of being effectively convicted (given that he was found guilty).

Figure 1

![Figure 1](image)

The motivation to try to identify different deterrence effects is simple: the deterrence effects of arrest and of being found guilty would be overrated if they were identified by their coefficients on equation (5) because of the assumption that the share of

3 In many cases the thief is found guilty and sentenced but does not have to go to prison. For certain kinds of crimes and if the individual has no previous criminal records, sentences up to three years of prison in Argentina do not have to be effectively served. Obviously, in a context of overcrowded jails as Argentina’s, judges tend to give sentences up to three years of prison that in most cases do not have to be effectively served.
sentences that must be effectively served is constant. This assumption would not be a valid one if, as could be Argentina’s case, judges are not giving sentences to be served because jails are overcrowded. In the same vein, constant probability of being found guilty could not be a valid assumption when evaluating the deterrence effect of being arrested if judges have too many cases and can not attend all of them. If this is the case, the probability of being found guilty (given the arrest) should decrease when the police rises the probability of being arrested.

Obviously, as there is no micro data to model individuals’ decisions on committing crimes or not, their rewards, etc., the model is approached with macro data on property crimes. To identify different deterrent effects three regressions are run (equations 5, 6 y 7): the first one assuming the probabilities of arrest, conviction and effective conviction as constants, the second one assuming that the per capita number of convictions that must be effectively served is constant, and the third one assuming that the number of per capita convictions is also constant. By estimating equations (5), (6) and (7) one should be able to identify the deterrent effect of increasing the share of sentences to be served, the conviction rate, and the probability of arrest respectively:

\[
\left(\frac{\text{Del}}{\text{Hab}} \right)_{it} = \alpha_i + \beta_1 \text{PrArr}_{it} + \beta_2 \text{PrSen}_{it} + \beta_3 \text{PrCon}_{it} + \beta_4 \text{Car}_{it} + \beta_5 \text{Edu}_{it} + \beta_6 \text{Une}_{it} + u_{1it}
\]

\[
\left(\frac{\text{Del}}{\text{Hab}} \right)_{it} = \gamma_i + \delta_1 \text{PrArr}_{it} + \delta_2 \text{PrSen}_{it} + \delta_3 \left(\frac{\text{Con}}{\text{Hab}} \right)_{it} + \delta_4 \text{Car}_{it} + \delta_5 \text{Edu}_{it} + \delta_6 \text{Une}_{it} + u_{2it}
\]

\[
\left(\frac{\text{Del}}{\text{Hab}} \right)_{it} = \mu_i + \lambda_1 \text{PrArr}_{it} + \lambda_2 \left(\frac{\text{Sen}}{\text{Hab}} \right)_{it} + \lambda_3 \left(\frac{\text{Con}}{\text{Hab}} \right)_{it} + \lambda_4 \text{Car}_{it} + \lambda_5 \text{Edu}_{it} + \lambda_6 \text{Une}_{it} + u_{3it}
\]

where \(i \) and \(t \) represent provinces and periods of time respectively, \(\text{Del} \) is the number of property crimes, \(\text{Hab} \) is number of inhabitants, \(\text{PrArr} \) is the probability of being arrested (defined as the ratio between property crimes with a known suspect, and number of property crimes), \(\text{PrSen} \) is the probability of being found guilty given than one was

\(^4\) Appendix 1 describes data and sources of information.
arrested (defined as number of condemnatory sentences over the number of property crimes with a known suspect), \(PrCon \) is the probability of receiving a sentence that must be effectively served (approximated as the ratio between the total of condemnatory sentences to be served plus those served out with preventive prison, and the total condemnatory sentences), \(Con \) is the number of sentences that must be served and \(Sen \) is the total of condemnatory sentences.

To consider other determinants of property crimes the following variables are added: \(Car \) is the number of cars per capita, \(Ine \) intends to proxy the degree of inequality of income distribution and is defined as the ratio between the number of illiterates and the number of persons having have completed the third level of education (together, these variables should address the potential reward of committing a crime\(^5\)), finally, unemployment rate was used to account for changes in the opportunity cost of legal activities. All variables are in logs.

Equations (5) to (7) were estimated using panel data on property crimes for Argentina’s provinces and the Federal District for the years 1982, 1985, 1988, 1991, and 1994. As mentioned previously, the use of panel data allows to compute cross sectional fixed effects, avoiding by this way potential sources of specification biases. Fixed effects in these regressions could be associated to cultural factors and other variables, as those related to GDP structure, educational attainment, etc., that do not vary in a short period of time and affect both the crime rate and its rate of underreporting.

To address the problem of endogeneity the equations were estimated by two stages least squares, using as instruments lagged values of explanatory variables, indexes of urbanity and industrial concentration, the rate of growth of the GGP in the last year, the ratio between condemnatory sentences in \(t \) and number of crimes in \(t-2 \) (the average of two previous years for all kinds of crime), the percent of accused that were up to 21 years old (average of two previous years), the percent of people between 20 and 24 years old that have not finished high school and are not enrolled, and the mortality rate.

\(^5\) Instead of cars per capita gross geographic product (GGP) was tried but, as for many provinces mining and petroleum activities are a main part of its GGP, it doesn’t reflect accurately the per capita income of their inhabitants.
Results

Table 1 shows the results of the estimation of equations (5), (6) and (7)

Table 1: Two stage least squares estimation, (crimes / pop) dep. variable

<table>
<thead>
<tr>
<th>Independent Variables</th>
<th>Equation 5</th>
<th>Equation 6</th>
<th>Equation 7</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(PrArr)</td>
<td>-0.758835</td>
<td>-0.787291</td>
<td>-0.565937</td>
</tr>
<tr>
<td></td>
<td>(-8.60)</td>
<td>(-5.89)</td>
<td>(-3.12)</td>
</tr>
<tr>
<td>(PrSen)</td>
<td>-0.540274</td>
<td>-0.457431</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(-8.34)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(PrCon)</td>
<td>-0.499495</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(-2.30)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Con/Hab)</td>
<td></td>
<td>-0.060076</td>
<td>-0.679687</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(-0.20)</td>
<td>(-1.69)</td>
</tr>
<tr>
<td>(Sen/Hab)</td>
<td></td>
<td></td>
<td>-0.133543</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(-0.49)</td>
</tr>
<tr>
<td>(Car)</td>
<td>0.263150</td>
<td>0.438989</td>
<td>0.429967</td>
</tr>
<tr>
<td></td>
<td>(2.07)</td>
<td>(3.07)</td>
<td>(1.79)</td>
</tr>
<tr>
<td>(Ine)</td>
<td>0.000537</td>
<td>0.000532</td>
<td>0.000947</td>
</tr>
<tr>
<td></td>
<td>(1.95)</td>
<td>(1.30)</td>
<td>(1.72)</td>
</tr>
<tr>
<td>(Une)</td>
<td>0.058410</td>
<td>0.059116</td>
<td>0.184110</td>
</tr>
<tr>
<td></td>
<td>(0.59)</td>
<td>(0.52)</td>
<td>(1.13)</td>
</tr>
<tr>
<td>(R^2)</td>
<td>0.858258</td>
<td>0.855545</td>
<td>0.685966</td>
</tr>
<tr>
<td>Std. Error of Reg.</td>
<td>(0.264)</td>
<td>(0.268)</td>
<td>(0.393)</td>
</tr>
</tbody>
</table>

* t-coefficients between parentheses.
** In all cases fixed effects were computed.

The coefficients estimated have the expected sign and are significant at usual confidence levels, except for the cases of unemployment in all equations and \(Ine \) in equation (6).

As is usual in empirical papers, the deterrent effect of being arrested is greater than that of being convicted if arrested (t value for the difference 1.99). However, this difference is overrated if one looks at coefficients in equation (5). As mentioned earlier, if the police improve efficiency (i.e arrest ratio increases) in a context where judges have no means to address all cases, holding the conviction rate constant biases the coefficient of the arrest ratio upward. This effect is controlled for in equation (6) by holding the number of conviction sentences per inhabitant constant. The same argument is valid to evaluate the deterrent effect of the conviction rate (\(PrSen \)) : if the efficiency of courts increases and
more cases can be solved but jails are overcrowded, judges would certainly increase the share of sentences that must not be effectively served This effect is captured by the difference in \(PrSen \) coefficients in equations (6) and (7).

From table 1 it can be seen that in equation (5) (the unrestricted one) the marginal deterrent impact of the arrest ratio is greater than that of the conviction rate (\(Psen \) \(t \) value for the difference in means 1.99) but this result is overstated because the conviction rate is held constant. The same happens with the coefficient of the conviction rate since the effective conviction rate (\(PrCon \)) is held constant. The unbiased estimates of (\(PrArr \) , \(PrSen \)) and (\(PrCon \)) are found in equations (7), (6) and (5) respectively (bold letters on Table 1). One can easily see that once these problems are taken care of the difference in deterrent impacts between arrest, conviction and effective conviction, at least in property crimes, vanishes.

Conclusions

The main objective of the paper was to estimate the economic model of crime avoiding usual econometric problems and splitting the deterrent effect of conviction (in a broad sense) among deterrent effects of being arrested, being found guilty and being imprisoned.

To avoid potential biases caused by aggregation, panel data on property crimes were used. As mentioned, if the composition of aggregate crime rate is different among provinces and through time, differences on underreporting and culpability rates among kinds of crimes may bias estimations. Fixed effects were computed to avoid other potential biases.

As in other empirical papers, we found that the deterrent effect of arrest is greater than that of conviction (given arrest). However, this effect is overrated if the conviction rate is held constant. The same happens with the marginal impact of convictions if imprisonment rates are held constant. In a context were jails are overcrowded and judges cannot address all cases the distinction seems appropriate. By running three equations instead of one, we were able to separate the true marginal impacts of the three deterrent variables: arrest, conviction and effective conviction. As a result the difference in marginal
effect between arrest and conviction vanishes leaving all three deterrent variables with the same impact on crime.
Bibliography

Appendix 1: Data and Sources

Variables

Del_i: number of property crimes reported. Source: Registro Nacional de Reincidencia y Estadística Criminal.

$PrArr_i$: is defined as the ratio between the number of property crimes with known suspect and the total of property crimes (Del_i). Source: Registro Nacional de Reincidencia y Estadística Criminal.

Sen_i: number of condemnatory sentences. Source: Registro Nacional de Reincidencia y Estadística Criminal.

$PrSen_i$: ratio between the number of condemnatory sentences and the number of property crimes with known suspect. Source: Registro Nacional de Reincidencia y Estadística Criminal.

Con_i: number of condemnatory sentences that must be effectively served or were served with preventive prison. Source: Registro Nacional de Reincidencia y Estadística Criminal.

$PrCon_i$: ratio between the number of condemnatory sentences that must be effectively served (or were served with preventive prison) and total of condemnatory sentences. Source: Registro Nacional de Reincidencia y Estadística Criminal.

Car_i: cars per 10 thousand inhabitants. Source: Asociación de Fábricas de Automotores.

Ine_i: ratio between number of illiterates and number of people that have finished the third level of education.

Instrumental Variables

6 Logs of all these variables were used in regressions.
- Lagged values of $PrArr$, $PrSen$, $PrCon$, Con/Hab, Sen/Hab.
- Urbanity Index. Source: Author’s calculation based on PHS.
- Ratio between Industrial Concentration Index and Population Concentration Index. Source: Author’s calculation based on Ministerio de Economía de la Provincia de Buenos Aires (1996) and Censos Nacionales de Población y Vivienda (INDEC).
- Rate of growth of Province’s Gross Geographic Product. Source: Author’s calculations based on Consejo Federal de Inversiones and Ministerio del Interior (1996).
- Infant Mortality Rate: Author’s calculations based on INDEC.

Table A.1

Main Variables Statistics

<table>
<thead>
<tr>
<th></th>
<th>Mean</th>
<th>Std. Dev.</th>
<th>Minimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crimes / Pop. (10 thous.)</td>
<td>129.28</td>
<td>56.40</td>
<td>27.52</td>
<td>335.37</td>
</tr>
<tr>
<td>(Del / Hab)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$Pr. Arrest$ (PrArr)</td>
<td>0.29</td>
<td>0.13</td>
<td>0.0122</td>
<td>0.9786</td>
</tr>
<tr>
<td>$Pr. Sentenced$ (PrSen)</td>
<td>0.17</td>
<td>0.36</td>
<td>0.0014</td>
<td>3.15</td>
</tr>
<tr>
<td>$Pr. Conviction$ (PrCon)</td>
<td>0.38</td>
<td>0.18</td>
<td>0.15</td>
<td>1.5714</td>
</tr>
<tr>
<td>Convenctions/Pop. (10 thous.)</td>
<td>0.19</td>
<td>0.13</td>
<td>0.0106</td>
<td>0.8024</td>
</tr>
<tr>
<td>(Con / Hab)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sentences/ Pop. (10 thous.)</td>
<td>2.95</td>
<td>2.17</td>
<td>0.0577</td>
<td>9.1924</td>
</tr>
<tr>
<td>(Sen / Hab)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cars / Population (Car)</td>
<td>0.09</td>
<td>0.06</td>
<td>0.0134</td>
<td>0.3451</td>
</tr>
<tr>
<td>Illiteracy R. / % 3rd level comp. (Ine)</td>
<td>165.99</td>
<td>180.92</td>
<td>2.1027</td>
<td>1258.45</td>
</tr>
<tr>
<td>Unemployment Rate (Des)</td>
<td>6.74</td>
<td>2.72</td>
<td>1.7172</td>
<td>14.5</td>
</tr>
</tbody>
</table>