
Q-Learning algorithms in a Hotelling model

Lucila Porto*

Universidad de San Andrés

2022-08-29

Abstract

What if Q-Learning algorithms set not only prices but also the degree of differentiation between them? In this

paper, I tackle this question by analyzing the competition between two Q-Learning algorithms in a Hotelling

setting. I find that most of the simulations converge to a Nash Equilibrium where the algorithms are playing

non-competitive strategies. In most simulations, they optimally learn not to differentiate each other and to set a

collusive price. An underlying deviation and punishment scheme sustains this implicit agreement. The results are

robust to the enlargement of the action space and the introduction of relocalization costs.

Keywords: Algorithmic Collusion, Reinforcement Learning, Q-Learning, Hotelling

JEL Codes: L12, L41, D43, L13, D83, C73

*e-mail: lporto@udesa.edu.ar

I am grateful for the valuable discussions with Lucía Quesada. I would also like to thank my family for all the help and support. Special

thanks are to my brother Manuel for all the useful comments, advice and for lending his computer when mine was not working. Finally, I

would also like to thank Gonzalo Ballestero for his helpful comments. All errors and omissions are my own.

1

https://lulaporto.github.io/
mailto:lporto@udesa.edu.ar

1. INTRODUCTION

More and more people are leaving their decisions in the "hands" of algorithms. What movie should we watch? Let

us choose the one suggested by Netflix. What is the best route to the supermarket? Let us follow the directions

of Google Maps. However, this paradigm change is not only reduced to consumers’ decision-making. Firms’

decision-making is also experiencing the same change. What price should I set for the product I am selling on

Amazon? Let us set the one suggested by the algorithm. What variety of products to offer? Again, let us let the

algorithm determine that. The economic consequences of these last questions motivate this paper. In particular,

how competition changes in a market where algorithms set prices and choose the degree of differentiation and

whether independent algorithms can reach collusive outcomes.

Algorithmic collusion is one of the main concerns on the antitrust agenda nowadays (CMA, 2018; OECD,

2017; Ohlhausen, 2017). Many studies show that two independent algorithms can reach supra-competitive

outcomes in several settings. This paper adds another model setup to this list. Understanding under which

market conditions algorithmic collusion could arise is the first step towards designing an algorithmic antitrust

regulation. The debate is still open about whether there should be a particular algorithmic antitrust regulation,

different respect from the traditional one, and whether the regulation should be ex-ante or ex-post (Calvano

et al., 2019; Harrington, 2018; Mehra, 2016). However, this debate is beyond the scope of this paper.

Empirical evidence about pricing algorithms is still scarce. The main reason is that there is no way to identify

the sellers that outsource their decision to algorithms from those that made their choices manually. Chen et al.,

2016 develops a methodology to identify algorithmic sellers. They found that 2.4% of the sellers from their

Amazon dataset1 delegate their decision to algorithms. Also, the authors compare the cumulative distribution

of algorithmic and non-algorithmic sellers and find some differences. For example, algorithmic sellers have a

higher probability of winning the Buy Box at all levels of rank sellers except for the first one. This is a significant

advantage since the majority of the sales on Amazon go through it. Wieting and Sapi, 2021 implement Chen

et al.’s methodology on another platform: Bol.com. They also found that a significant proportion of sellers

outsource their decisions to algorithms. The autorhs run an econometric analisys and found that algorithmic

sellers are more likley to win the Buy Box.

Respect theoretical papers, there is a growing literature that accounts for the competition between algorithms,

and the market implications. In Asker et al., 2021; Ballestero, 2022; Calvano et al., 2020; Klein, 2019, the

algorithms choose prices. In Calzolari et al., 2021; Kimbrough and Murphy, 2009; Waltman and Kaymak, 2008

the algorithms choose quantities. In Brown and MacKay, 2021 the firms choose between algorithms that set

prices with different frequencies. As can be seen, most of them are limited to one variable decision problem. As

far as I am aware, this is the first economic paper in this literature where the algorithms choose two variables. In

particular, this paper aims to tackle the question: what if two algorithms not only set prices but also the degree of

differentiation between them? To address this question, I analyze the competition between two algorithms in a

Hotelling setting.

Broadly speaking there are two decision-making algorithms generations: the adaptive ones and the learning

ones. The first of those has a model in the back-end, and the algorithms try to find their best strategy considering

demand estimations and previous actions. Contrary, the learning algorithms are mostly model-free, and the

algorithms learn by experience. This paper focuses on learning algorithm, particularly Q-Learning algorithms. The

question about the emergence of collusion from the competition between two learning algorithms is interesting.

Mainly because those algorithms are designed independently, and they are not even aware of the existence of

another algorithm, but they could learn to play collusive strategies.

1Their dataset was restricted to bestseller products only. The proportion of algorithmic sellers depends on some threshold values.

2

In most of the simulations, I found that two Q-Learning algorithms that repeatedly compete in a Hotelling

scenario choose not to differentiate and set a price greater than the competitive one. Moreover, the strategy

that each algorithm follows is, in most cases, the best response to the strategy of its rival. In other words, they

are playing a Nash Equilibrium. Finally, I probe the existence of a deviation-punishment scheme. So, if one

algorithm breaks the implicit agreement by undercutting its rival’s price, the other algorithm punishes the cheater.

However, the punishment is finite in time. So, after some iterations, both algorithms return to set a similar

supra-competitive price to the one set before the deviation. Summing up, the repeated competition and the

existence of a deviation and punishment scheme reduce the price competition in the Hotelling one-shot game

and lead to an equilibrium with minimum differentiation and supra-competitive prices. All the results are robust

to the enlargement of the action space (the algorithms have more locations or prices from which to choose) and

the introduction of relocation costs.

Previous papers show that two Q-Learning algorithms can play collusive strategies when they have one

decision variable (Calvano et al., 2020; Klein, 2019). This result also holds under uncertainty (Ballestero, 2022;

Calzolari et al., 2021). This paper adds a two decision variable setting to this collusive result list. In conclusion,

two Q-Learning algorithms can play collusive strategies besides facing a more complex environment. When the

setting gets more and more complex, the Q-Learning algorithm faces computational difficulties because of the

problem’s dimension. In consequence, it is unlikely that actual firms use this type of learning algorithm. However,

Q-Learning’s transparency and simple parameter interpretation give valuable insights. The paper results have to

be seen as a modest step toward a better understanding of algorithmic collusion.

The rest of this paper is organized as follows. Section 2 describes the state of the literature. Section 3

presents the economic environment. Section 4 introduces the Q-Learning algorithm and the pseudocode used in

the simulations. Section 5 outlines the baseline parameter configuration. Section 6 describes some theoretical

benchmarks equilibriums that can arise in a Hotelling model and the metrics used to evaluate the performance

of the algorithms. Section 7 and 8 present the simulation’s results and robustness checks. Finally, section 9

concludes.

2. LITERATURE

The possibility of sustaining collusive equilibriums in a Hotelling model is a topic well investigated in the economic

literature. The firm’s possibility of differentiating each other reduces the severity of the price competition. Also,

with flexible product choice or the chance to relocate in the space line, the punishment after a deviation is reduced

(Chang, 1992). Also, there is a growing literature on algorithmic decision-making and collusion. However, no

paper set a bridge between both literatures. So, this is the first paper that tackles the question of algorithmic

collusion in a Hotelling setting.

The present work contributes to the growing literature on algorithmic collusion. In this field, Calvano et al.,

2020 find that two Q-Learning algorithms can sustain collusive outcomes in an infinitely repeated Bertrand game

with Logit demand. In Klein, 2019 the author finds that two Q-Learning algorithms can also sustain collusive

outcomes in an infinitely repeated Maskin and Tirole setting with linear demand. In that sense, collusion is also

achievable when the price decision is sequential instead of simultaneous.

Collusion is also robust to the introduction of uncertainty and changes in the decision variable. First, the

work of Ballestero, 2022 extended Klein’s work and found that the collusion can be sustained even when the

firms have stochastic costs. Second, in Calzolari et al., 2021 the authors found that two Q-Learning algorithms

can sustain collusive outcomes in an infinitely repeated Green and Porter setting. Here, the algorithms choose

quantities simultaneously in an environment with uncertain demand and imperfect observability.

3

There are also some works with a Hotelling setting. For example, in Sanchez-Cartas and Katsamakas, 2022

the authors find that a Q-Learning algorithm competes with a Particle Swarm Optimization (PSO)2 algorithm

can sustain supra-competitive prices in a Hotelling setting. However, the decision variable of both algorithms is

only the price. They are already located over the segment. In particular, they are fully differentiated. Another

example is Vainer and Kukacka, 2021. The authors find that two Nash-Q-Learning algorithms learn to play Nash

Equilibrium strategy in a Hotelling setting. Like the previous case, the algorithms are already located at the ends

of the segments, and they only choose the price. In the robustness checks, the authors find that if the learning

algorithm is Q-Learning instead of Nash-Q-Learning, both algorithms learn to choose supra-competitive prices.

Nevertheless neither in Sanchez-Cartas and Katsamakas, 2022 and in Vainer and Kukacka, 2021, the authors test

the presence of a reward-punishment scheme. Therefore, it is impossible to tell whether the supra-competitive

prices are the result of an implicit collusion agreement or pure luck. This work goes beyond both papers

introducing the location choice problem, together with the price choice problem, and testing for the existence of

a deviation-punishment scheme.

The other difference is the transportation cost. In Sanchez-Cartas and Katsamakas, 2022 and in Vainer and

Kukacka, 2021, the function that the authors use is lineal. I use a quadratic function instead. The Hotelling model

with lineal transportation costs presents discontinuities in the demand and the profit function. Also, a Subgame

Perfect Nash Equilibrium (SPNE) does not exist for all configurations of location and price (d’Aspremont et al.,

1979). Q-Learning is a model-free algorithm; consequently, the discontinuities do not necessarily generate a

problem for the learning of the algorithms. However, the discontinuities introduce difficulties when comparing

the simulations and theoretical results.

The two variable extension in learning algorithms is not new in the economic literature (Dogan & Güner,

2015; Park & Ryu, 2022; Takahashi et al., 2018; Xie & Chen, 2004). However, there is not a unified methodology

followed in multi-action reinforcement learning (RL) problems. In some works, each variable decision is

considered as an independent RL problem (Wang & Yu, 2016; Xie & Chen, 2004). In this approach, the algorithm

aims to find an optimal action rule for each RL problem. For example, Xie and Chen, 2004 proposes a vertical

supply chain with a supplier and two horizontal differentiated retailers. Both retailers are modeled as two

Q-Learning algorithms that simultaneously choose the retail price and quantity to order from the supplier. An

alternative methodology consists in considering all the possible combinations between the actions and treats

each one as a primitive action. In this case, the algorithm only needs to find a single optimal action rule (Li et al.,

2012; Park & Ryu, 2022). For example, Park and Ryu, 2022 modeled a differentiated duopoly market where two

suppliers compete in ethical and transparency levels of the supply chain. Each supplier is a Q-Learning algorithm.

In each game stage, the suppliers simultaneously choose a tuple of the ethical and the transparency level.

The present work follows the first approach in which each variable decision is considered by itself. In

consequence, the objective of each algorithm is to find one policy rule for the location problem and another

for the pricing problem. However, since each decision is not entirely independent, both RL problems are not

completely isolated. It is important to note that following the second approach, where the algorithms’ actions are

the combinations of locations and prices, makes the setup different with respect to the Hotelling model. This

is because, by merging both decision moments in only one, there is no update in the information. So, when

choosing the price, the algorithms do not know the current locations.

2The PSO is an Evolutionary Algorithm originally from the biology and sociology field. The finding of the optimal action reproduces the

behavior of a school of fish or a flock of birds where each member helps and provides information to the rest of the members. In coding

language, each member is a particle. And in a Hotelling setting, each action that is tested is a particle. Thus, a pair {location, price} is a

particle. The idea is that in the first stage, particles are randomly drawn from the action space. From each action, the player gets a reward. In

the following iterations, the particles will move toward the optima. After several iterations, the particles will converge to the best action

(Tam, 2021)

4

If it is not explicitly modeled, the algorithms ignore the relationship between the actions. This relationship

could give the algorithms valuable information to optimize the exploration or the learning process. Some

works exploit this possibility mainly because, in a multi-action environment, the action space’s cardinality grows

exponentially, so the computation demand is higher (Chandak et al., 2019; Moodley et al., 2019; Wang & Yu,

2016). For example, in Chandak et al., 2019, the authors exploit the similarity across the feedback received after

playing an action and reduce the action space into a representative action space. Other works introduce prior

knowledge to discard some actions and reduce the cardinality of the action set. In this work, I do not exploit any

action relationship. This is because my goal is focused on the model and results interpretation rather than on the

efficiency of the algorithm decision-making. So, I want to make the model as transparent as possible.

The present work contributes to the mentioned literature because the application in competition policy of

the two variable decision problem is fairly new. Indeed, as far as I am aware, this is the first paper to model an

algorithmic decision-making problem with two variables under the lens of competition policy and antitrust.

3. ECONOMIC ENVIRONMENT

Consider a model of spatial competition where firms and consumers are distributed over some geographic space.

There are two firms indexed by i = {1, 2}. The firms compete in an infinitely repeated location-price game.

In every stage game, at first, they simultaneously choose a location, and then, knowing both locations, they

simultaneously choose a price. The location dimension can be interpreted geographically or as representing some

more general characteristics of the good3.

A mass of consumers is uniformly distributed over a [0, 1] segment. Each consumer will buy at most one unit

of the product (he may not consume). He will choose to buy from the firm that generates the highest consumer

surplus (CS). In particular, if the consumer is at the point x ∈ [0, 1] and buys from the firm i, which is located at

li, he obtains a surplus equal to:

CS = u− pi − f(li, x), (1)

where u is the gross surplus of consuming one unit of the good, pi is the price paid, and f(li, x) is the disutility of

purchasing a product that is not the most preferred. I assume a quadratic utility cost f(li, x) = τ ∗ (li − x)2. So,

the disutility is increasing in the distance between the firm i and the consumer location x.

The firm’s posible locations are restricted to the same [0, 1] segment where the consumers are located. So, in

each stage game, the firm i can choose li ∈ [0, 1] and pi ∈ [ci, u]4, where ci is the firms’ marginal cost.

Given the location and price of both firms, there is a consumer who is indifferent about purchasing from

either firm. The location of this indifferent consumer is given by:

x∗ =
lright + lleft

2
+

pright − pleft
2τ(lright − lleft)

, (2)

where the subindex right and left refer to the firm on the right and left respectively. x∗ divides the segment

between consumers at the left, who prefer the leftmost firm, and consumers at the right, who prefer the rightmost

firm.
3The location-price game can be thaugh as an abstraction of a model of horizontal product differentation. In that game, each location

over the segment represent a different variety of a product. The firms, when choosing location, are choosing which variety to offer. The

distribution of the consumers over the segment represents the heterogenous preferences over the varieties. In a model of horizontal product

differentation, each consumer has a different ranking over the varieties. So, the most prefered variety is not the same for everyone. Also, if

two varieties have the same price, then a consumer will buy the variety closer to his adress because it is the more prefered one.
4Note that the setting a price below ci is a dominated strategy by setting any pi ∈ [ci, u] because it will gives you a non-positive payoff.

Setting a price above u is also a dominated strategy by setting any pi ∈ [ci, u] because the payoff is always null. That is why the price space

is restricted to that particular segment.

5

It is important to note that, besides both firms charging different prices, x∗ does not necessarily lie between

the two firms. Moreover, for certain combinations of location and price, the location of the indifferent consumer

could fall outside the [0, 1] interval.

Since consumers may prefer not to consume at all, the demand obtained by each firm is not always the entire

segment to the right or left of the indifferent consumer. There exist another type of indifferent consumer who

is indifferent between consuming and not consuming. This consumer is the one who arises from equating the

consumer surplus to zero CS(x) = 0. The roots of this polynomial of degree 2 are the locations of this indifferent

consumer. The demand for each firm is then defined as:

[Correct side of x∗] ∩ [area between the roots of the polynomial CS(x) = 0]. (3)

Figures 2, 3, and 4 display the different possible cases of the firms’ demand. If the firms choose the same

location, they compete á la Bertrand, where the potential demand of the lower-priced firm is the entire segment,

and the effective demand of the higher-priced firm is zero. The effective demand of the lower-priced firm is the

area between the locations of the consumer indifferent between consuming or not consuming. If the firms also

set the same price, they divide the demand evenly.

Based on the location of both firms and the indifferent consumer, there exist three possible cases:

Insert Figure 1 here.

The following figures are examples for each case. In each plot, the blue (red) curve represents the consumer

surplus when the consumer buys from firm 1(2).

Case 1.

Insert Figure 2 here.

Case 2. In the left panel, firm 1’s demand corresponds to the segment [0, x∗], and firm 2’s demand, to the

segment [x∗, 1]. In the right panel, there is no intersection between both effective demands.

Insert Figure 3 here.

Case 3. In the left panel, x∗ > 1, so all the consumers purchase from firm 1. The right panel represents the

opposite case with x∗ < 0. There, all the consumers purchase from firm 2.

Insert Figure 4 here.

The demand in each case is defined by:

• Case 1:

Di,t =


min{1,max{roots}} −max{0,min{roots}}, pit < pjt

0.5 ∗ [min{1,max{roots}} −max{0,min{roots}}] , pit = pjt

0, pit > pjt

• Case 2:

Di,t =

{
max{min{x∗; max{roots}} −max{0; min{roots}}; 0}, li < lj

max{min{1; max{roots}} −max{x∗; min{roots}}; 0}, li > lj

6

• Case 3:

Di,t =

{
min{1,max{roots}} −max{0,min{roots}}, |li − x∗| > |lj − x∗|

0, |li − x∗| < |lj − x∗|

In both case 2 and case 3, it could not happen that li = lj nor that |li − x∗| = |lj − x∗| because that would imply

that they are in the same location (case 1).

The profit earned by each firm is given by:

πi(pi,t, li,t, pj,t, lj,t) = (pi,t − ci) ∗Di,t. (4)

4. Q-LEARNING

In his thesis, Watkins proposes Q-Learning as a tool to tackle Markovian decision processes (MDP) (C. Watkins,

1989). A MDP is defined as a tupleM = (S,A, T,R, δ,Ω) where S and A are the finite state and action spaces,

respectivly. T : A×A → S and R : S ×A → R are the transition and reward functions, respectivly. δ ∈ [0, 1) is

the common discount factor to both algorithms. The initial state s0 is drawn from the distribution function Ω.

The algorithm aims to find an optimal policy rule to maximize the discount sum of rewards. A policy rule is a

mapping from the state space to the action space g : S → A that tells the algorithm which is the optimal action

that has to be taken in every state.

After each algorithm plays an action ai ∈ A in state s ∈ S, they receive a reward r(ai|s) ∈ R and the

environment moves to another state s′ ∈ S. The transition probability from one state to another is unknown

to both algorithms. This is because each algorithm when playing ai does not know the action taken by the

other algorithm. Also, the true expected reward r∗ for playing one action is unknown and unobservable to the

algorithm. Indeed, the objective of each algorithm is to estimate r∗ for each state so she can play optimally.

Each algorithm is completely unaware of the existence of the other algorithm. For each one, it is as if the

model has some noise. In that sense, the reward that the algorithm i sees after playing the action ai in state s is

a function of the true reward and a noise σi:

r(ai|s) = r∗(ai|s) + σi, (5)

σi captures the influence of action aj in the reward that algorithm i receives. Because the effect of playing action

a is unknown for each algorithm (transition to another state and reward they receive), the model is stochastic.

However, the environment is fully observable because the algorithms know in which state they are in every

moment.

In this particular Hotteling setting, the objective of each algorithm is to choose a sequence of prices and

locations {pit, lit}∞t=0 in such a way as to maximize the discounted sum of profits:

max
{pit∈P, li,t∈L}∞t=0

E

[∞∑
t=0

δtπit (pit, pjt, lit, ljt)

]
, (6)

where P and L are the discrete spaces of possible prices and locations, respectively. Each space is defined as:

P = {c, (Np − 1)c+ u

Np
,

(Np − 2)c+ 2u

Np
, . . . ,

2c+ (Np − 2)u

Np
,
c+ (Np − 1)u

Np
, u}, (7)

L = {0, 1

Nl
,

2

Nl
, . . . , 1}, (8)

where Np and Nl are parameters to be defined. None algorithm will choose a price below their marginal cost c,

nor set a price above the maximum price a consumer is willing to pay u. Note that if c = 0, the price grid will be

7

defined as:

P = {0, u
Np

,
2u

Np
, . . . , u}. (9)

Rewriting the problem in its equivalent recursive form and in terms of the elements of A and S to eliminate

the time reference:

V ∗i (s) = max
{ai∈A}

{E[πi | s, ai, a−i] + δE [V ∗i (s′) | s, ai, a−i]} , (10)

where V ∗i (.) is the value function of the problem, ai is the action played by the algorithm i, and a−i are the

actions played by the rest of the algorithms, s is the current state, and s′ is the state of tomorrow. In what follows,

the prime (′) over a variable will be used as a shorthand for the variable’s time-notation. So, if st = s, then

st+1 = s′. The same applies for a.

Notice, that the action space has two dimensions instead of one. In consequence, this problem falls inside the

multi-action MDP field. A multi-action MDP is a MDP with a multi-dimensional action space. A is now defined as

the product of sub-action spaces: A = A1 ×A2 × ...×ANA
where NA is the number of actions the algorithm

must take. In this problem, NA = 2 and A = Al ×Ap, where Al and Ap are the action set when the algorithms

choose location and price, respectively. The agent can handle the problem as NA independent problems where

in each one, she has to estimate a value function and construct an optimal policy function (Wang & Yu, 2016).

However, when algorithms choose the price in this setting, they have to know both locations. In that sense, each

problem can not be treated as totally independent from each other.

Both Q-Learning algorithms came into the world without knowledge of each action’s rewards. In fact, by

playing, they will be learning by trial-and-error. Their primitive objective is to estimate the long-run reward of

each action in each state to be able to play optimally. In that sense, it is worthy to state the subjacent problem of

the algorithms:

Qi(s, ai) = E[πi | s, ai, a−i] + δE
[
max
a′i∈A

Qi (s′, a′i) | s, ai, a−i
]
, (11)

where Qi(.) is the S ×A reward matrix. The element (s, a) ∈ Qi is the expected return of playing action a in the

state s.

Considering that the algorithms learn by trial-and-error and that they must see a reward after playing one

action, it is necessary to have one reward matrix Qi for each decision variable that the algorithm has. So,

each algorithm will have one Qi for the location problem and another one for the price problem. It is worth

introducing some notation. The following table describes the notation used in each problem:

Insert Table 1 here.

In what follows, Qi will be used as a synonym of Ql,i and Qp,i when it is indistinct to which particular

problem I am referring. The same applies to ai and s.

An action of the algorithm i in the location choice problem is a tuple (li,t, pi,t). Note that besides choosing only

the location, the action includes a price. This is because, when choosing the location, the algorithm internalizes

the subsequent price decision. The way she takes into account the price is the following:

For every location l#, pick the price p∗ that is arg max of Ql,i(sl, al = (l#, p)). Compute the reward

of the action al = (l#, p∗). The algorithm will have as many rewards as the number of possible

locations. Then compare them all and keep with the maximum. The optimal location will be the one

corresponding to this maximum reward.

8

An action in the price choice problem is a price pi.

Under the one-period memory assumption, a state st contains information of the current period (price choice

problem) or one-period behind (location choice problem). The one-period memory assumption is necessary for

the state space to be finite. A state in the location choice problem is a pair of tuples {(li,t−1, pi,t−1), (lj,t−1, pj,t−1)}.
A state in the price choice problem is a pair {li,t, lj,t}.

Note that the last price played by both algorithms is not part of the state space of the Qp,i matrix. The reason

behind this is that if not, there will be three-time moments in the updating of the Qp,i matrix (sp = {past prices,

current locations} and ap = {current price}, s′p = {current price, future locations}). So, adding the past price as

a state variable would break the one-time memory assumption.

After playing the action ai ∈ A in state s ∈ S in the time moment t, the element (s, ai) of the Qi,t matrix is

updated according to the following equation:

Qi,t+1 (s, ai) = (1− α) ·Qi,t (s, ai) + α ·
[
πi (s, ai, a−i) + δ max

a′i∈A
Qi,t (s′, a′i)

]
. (12)

All the rest Qi,t matrix’s elements 6= (s, ai) remain the same Qi,t+1 (.) = Qi,t (.). The parameter α ∈ [0, 1] is

called the learning rate and affects the weight that the initial Q values have on the final Q values estimated and

the speed of the learning process. The process is too slow for low values of α because it gives a small weight to

the new rewards. In contrast, if α→ 1, the algorithm forgets too fast what she has learned.

The algorithms must be exposed repeatedly to every state and play a priori non-optimal actions to ensure

learning. For this purpose, the algorithms will follow an ε−greedy action in each stage game. With probability ε,

the action played by the algorithm will be uniformly picked from the action space A = Al ×Ap. With probability

1− ε, the algorithm plays the optimal action for the current Qi(s, a) matrix. ∼ U(Al ×Ap) with probability ε

arg maxQi(s, a) with probability 1− ε
(13)

Note that if the algorithm choose optimally her action, then al,i and ap,i are the argmax of Ql,i(s, a) and Qp,i(s, a),

respectively. Contrary, if she acts randomly, then a tuple (al,i, ap,i) is uniformly picked from all the possible

location and price combinations.

The exploration rate εt is decreasing over time:

εt = e−βt, (14)

where β > 0. Given β, for greater t, smaller εt and so, fewer actions are chosen randomly, and more are chosen

optimally. So, at the beginning of the learning process, the algorithms randomize more frequently than later in

the process. Also, ceteris paribus, greater β implies less exploration rate for all t. At one extreme, if β →∞, the

algorithm always chooses optimally. However, the algorithm never passes through a learning process where she

is forced to try a priori, suboptimal actions. Consequently, she could be stuck in a local optimum and never learn

the best strategy. At the other extreme, if β = 0, the algorithm always randomizes and never chooses optimally. β

also affects the rate at which the exploration rate varies. At greater β, the rate at which εt reduces itself is greater.

4.1 Qi matrix updating

Figure 5 displays the timing and structure of the first two iterations of the game. The goal of this timeline is to

clarify the updating of the two Ql,i and Qp,i matrices. In the figure 5, the current state is highlighted in blue, and

the current action in green. The reward obtained by playing that action is highlighted in orange. The next state

is highlighted in red. Finally, the moment of updating each Ql,i and Qp,i matrices is highlighted in violet.

9

Insert Figure 5 here.

The following equations make explicit the updating of both Ql,i and Qp,i matrices after the first action is

played.

• Ql,i matrix:

Ql,i(sl = {(li,t−1, pi,t−1), (lj,t−1, pj,t−1)} , al = {(li,t, pi,t)}) = (1−α)·Ql,i(sl, al)+α
[
πi (s′l) + δ max

a′l∈Al

Ql,i(s
′
l , a
′
l)

]
(15)

• Qp,i matrix:

Qp,i(sp = {li,t, lj,t} , ap = {pi,t}) = (1− α) ·Qp,i(sp, ap) + α

[
πi (sp , ap) + δ max

a′p∈Ap

Qp,i(s
′
p , a

′
p)

]
(16)

Notice that πi(sp, ap) = πi(s
′
l). Both profits are the reward the algorithm recives after playing {li, pi} and

when the rival is playing {lj , pj}.
Notice that all the information needed for updating the Ql,i matrix is inside one iteration. However, for

updating the Qp,i matrix, it is necessary to use the information of two iterations. In particular, the updating

requires the new location.

4.2 Pseudocode

The following code block is the pseudocode of the Q-Learning algorithm used in the simulations.

Insert Algorithm 1 here.

4.3 Convergence

There is a theoretical proof that guarantees the convergence of a single-agent Q-Learning problem with finite

action and state-space and a deterministic environment (C. J. Watkins & Dayan, 1992). However, in a multi-agent

problem, where the problem is stochastic, the convergence result does not necessarily hold. Consequently, there

is no guarantee that the elements of the Qi matrix will converge, nor that the algorithms find the optimal policy

rule.

However, convergence can be empirically verified. Following Calvano et al., 2020, an experiment converges

if the argmax of the Qi matrix for each state remains stable over 100,000 consecutive periods. Since I have

two Qi matrices, an experiment converges if that condition holds for both Ql,i and Qp,i. I call each of theese

post-convergence matrix the long-run matrix.

5. BASELINE PARAMETER CONFIGURATION

Economic environment. I set n = 2 (duopoly), the marginal cost equal to cero c = 0 and no relocalization

costs. For the demand side, I set the gross surplus (u) equal to 2.5. I define τ = 1 for the transportation cost. The

discount rate δ is set equal to 0.95.

10

Action and state space. I define Np = 7 and Nl = 3. The cardinality of the action space depends on the

decision variable of the algorithm. When she is choosing the location, the cardinality of the action space is

|Al| = Np ×Nl = 21. In contrast, when choosing the price, the cardinality is |Ap| = Np = 7.

The algorithms have one-period memory. In consecuence, the state space is |Sl| = |Al| × |Al| = 21× 21 = 441,

and |Sp| = |Nl| × |Nl| = 3× 3 = 9, when choosing location and price, repectivly.

I inicializate all the elements of Qp,i and Ql,i equal to zeros. The dimension of each Qi matrix is: |Ql,i| =
|Sl| × |Al| = 441 × 21 = 9, 261 and |Qp,i| = |Sp| × |Ap| = 9 × 7 = 63. At the begining of each experiment, the

initial state sl(t = 0) and sp(t = 0) are randomly choosen from a uniform distribution over each action space.

Convergence. The stage game is repeated for T = 20, 000, 000 periods or until the two Ql,i and Qp,i matrices

converge, what happens first. Each repeated game consists of an experiment.

Experiments and simulation. Since the learning process depends on some randomness (initial state and the

flipping coin that determines if the algorithms choose optimally or randomly their actions), and so, to reduce the

stochastic noise, I run NExp = 100 experiments for each set of parameter configurations. This set of experiments

is one simulation.

Representative simulation. I define the representative simulation as the one with α = 0.16 and β = 1.6×10−5.

Parameter grid. I run several simulations, each one for diferent learning and experimentation parameters’

values. In this way, I probe that the results do not depend on a particular parameter configuration.

I define the same learning and exploration parameter grid as Calvano et al., 2020. Then, the α grid and the

β grid are define as the intervals [0.025, 0.25] and [0.0, 2× 10−5]. However, I take only six equal-spaced values

from those intervals because of computational limitations. So, for this economic environment and action and

state space configuration, I run 36 simulations. Each simulation is a different combination of α and β. Also,

each simulation includes 100 experiments, and each experiment is ran for T = 20, 000, 000 periods or until

convergence.

6. BENCHMARK EQUILIBRIUMS AND PERFORMANCE METRICS

6.1 Benchmark equilibriums

As a benchmark, I state some common equilibriums in a Hotelling setting.

Bertrand Equilibrium. In a one-shot game, and if the firms are located at the same location (li = lj), in

the unique Nash Equilibrium both firms set a price equal to the marginal cost pB = c. Replacing the baseline

parameter values of section 5, the Bertrand price is pB = 0. Each firm’s profit is πB = 0.

Subgame Perfect Nash Equilibrium. If the location-price game is played only once, the firms choose to

differentiate as much as possible (li = 0 and lj = 1) and set a price equal to the transportation cost plus their

marginal cost pSPNE = τ + c. Each firm’s profit is πSPNE = τ/2. For the baseline parameter values, pSPNE = 1

and, πSPNE = 0.5.

11

Social optimum. Since demand is fully inelastic, a higher price does not generate a deadweight loss if the

segment is fully covered. The price will only redistribute the total surplus between the firms and the consumers.

The social optimum equilibrium will be the one that minimizes the total transportation cost. If there are

three possible locations over the segment (baseline simulation), the pair of locations that minimizes the total

transportation cost are the ones in which the distance between the firms is 0.5. If there are five possible locations

over the segment (robustness check), the social optimum pair of locations is {0.25; 0.75}.
Table 2 shows the total transportation cost for each pair of locations. Note that the pair of locations when

Nl = 5 include also the ones with Nl = 3. So, table 2b includes only the ones that are not present in 2a. Without

loss of generality, I assume that both firms set the same price.

Insert Table 2 here.

Collusion. I consider the collusive outcome benchmark as the one where the two firms are active in the market

and set the same price. It is not always true that the firms acting as a monopoly would prefer to serve the whole

segment. According to the price they set, there will be a consumer that is indifferent between consuming and

not consuming. Such consumer’s location will determine if the whole segment is covered or not. Equating the

consumer surplus to cero and solving for d:

CS = 0 = u− pi − τd2, (17)

d(pi) =

√
u− pi
τ

, (18)

where d is the distance of the indifferent consumer to firm i. Note that the distance of the indifferent consumer

varies negatively with respect to the price.

If both firms coordinate their locations to maximize the joint profit, they will minimize the distance between

them and the consumer further apart. So, if Nl = 3, they will never locate simultaneously at one extreme of the

segment because the consumer further apart will be at one unit of distance. In all the other cases, there are 0.5

units of distance. In Nl = 5, the firms will locate in the same location of the social optimum equilibrium. This is

the only pair of locations where the consumer further apart is at 0.25 units of distance.

The aggregated demand D(p) for the monopoly firm when Nl = 3 and both firms locate at the middle or one

at each extreme of the segment is:

D(PC) =

2
√

u−pC
τ ∗ 1

1−0 if d < 0.5,

1 ∗ 1
1−0 if d ≥ 0.5,

(19)

the first expression corresponds to the case when the segment is not fully covered. If not, all the consumers

pucharse. Then, the demand is equal to the entire segment multiplied by the density function (1
1−0).

The monopoly firm will choose a price pC to maximize the joint profit function:

max
pC

π(pC) = (pC − c)D(PC). (20)

There will be an interior solution only in the not-fully covered case. On the contrary, when all the consumers

pucharse one unit of good, the optimal price will be the one that solve d(p) = 0.5.

Deriving π(pC) and solving for pC :

pC =
2u+ c

3
. (21)

12

Replacing in the distance expression:

d(pC) =

√
u− c

3τ
. (22)

Replacing the parameters values of the baseline configuration:

pC =
5

3
≈ 1.67 d(pC) =

√
5

6
≈ 0.83 (23)

Due to fact that d(pC) > 0.5, the optimal price is not pC = 5
3 , but instead the one that solves d(pC) =√

u−pi
τ = 0.5. Solving for pC :

pC =
9

4
= 2.25 (24)

The aggregated collusive profit is given by

π = (pC − c) = 2.25 (25)

When Nl = 3 but the firms locate at 0.5 units of distance between them, the aggregated demand is equal to:

D(PC) =


3
√

u−pC
τ ∗ 1

1−0 if d < 0.25,

0.5 ∗ 1
1−0 +

√
u−pC
τ ∗ 1

1−0 if 0.25 < d < 0.5,

1 ∗ 1
1−0 if d ≥ 0.5,

(26)

where the firsts two cases, the segment is not fully covered. In the first one, there are consumers, between the

firms and between the middle firm and the segment limit, that do not pucharse at all. In the second case, all the

consumers between the firms pucharse, but there are some consumers between the middle firm and the segment

limit, that do not. Lastly, in the third case, all the consumers pucharse one unit.

Neither of the two first cases’ solutions verify the distance restriction. So, the optimal collusive price is the

same than the previous case.

Finally, when Nl = 5 the optimal pair of locations is {0.25, 0.75}. Then, the aggregated demand is equal to:

D(PC) =

4
√

u−pC
τ ∗ 1

1−0 if d < 0.25

1 ∗ 1
1−0 if d ≥ 0.25.

(27)

Again, the first expression corresponds to the case with no-fully covered segment. If not, the demand is the

second one.

Once again, the interior solution do not verify the distance restriction. So, the optimal collusive price is:

d(pC) =

√
u− pi
τ

= 0.25 (28)

pC = u− 1

16
τ = 2.4375 (29)

The aggregated collusive profit is given by

π = (pC − c) ∗ 1 ∗ 1

1− 0
= 2.4375 (30)

Repeted game. In an infinitely repeated game, any supra-competitive outcome is sustainable for any discount

factor of future payments greater than a threshold value (Folk-Theorem). Thus, firms can maintain collusive

equilibria through a deviation and punishment scheme.

In a one-shot game, the firms will fully differentiate each other. However, an equilibrium with minimum

differentiation may arise in a repeated game where the settlement of an implicit agreement reduces the price

competition intensity.

13

6.2 Performance metrics

Profitability. I use two metrics to evaluate the performance of the algorithms in terms of profitability.

The first one is the evolution of the average one-period profit. To build this metric, I take the average between

experiments (exp) of the one-period profit for every t:

π̄t =

100∑
exp=1

πt,exp
100

. (31)

The second metric I use is the extra-profit-gain5:

∆ =
π̃ − πPSNE

πC − πPSNE
, (32)

where π̃, is the average of the 1,000 periods after convergence. On the other hand, πPSNE and πC are the Perfect

Subgame Nash Equilibrium and the collusion one-period-profit, respectively. If π̃ = πPSNE = 0.5 then ∆ = 0. In

this case, besides the repeated scenario, the algorithms do not manage to get supra-competitive payoffs. Contrary,

if π̃ = πC = 2.25/2 = 1.125, then ∆ = 1. In this case, the algorithms manage to get the collusion profit. Note,

however, that ∆ could be negative. Negative values arise when the algorithms get a payoff less than the one of

PSNE. For example, when they get the Bertrand payoff πB = 0.

Replacing the benchmark profit values in the expression for ∆:

∆ =
π̃ − 0.5

0.625
. (33)

The figure 6 presents a grid for ∆ with some benchmark values.

Insert Figure 6 here.

∆ can be greater than 1 but can not be less than -0.8. The profits associated with ∆ > 1 could be related to a

deviation reward. By cheating and breaking the implicit agreement, an algorithm could obtain a reward higher

than the collusive one.

Theoretical Q matrix. After verified the convergence of the simulations, I check whether the algorithms are

playing a Nash Equilibrium or a Perfect Subgame Nash Equilibrium.

Despite that each simulation converge and, in consecuence, both Ql,i and Qp,i matrices are stable, they are

not necessarily optimal. Consequently, the algorithm might not be playing optimally in response to her rival.

To check the optimality of the actions taken, I test how different are the long run Ql,i and Qp,i matrices to the

Ql,i and Qp,i that arises when playing against a fixed-strategy competitor. I call theese matrices the theoretical

Q-matrices.

To estimate the theoretical Q-matrix, one algorithm is forced to play her long-run strategy and cannot update

her Ql,i and Qp,i matrices. So, it is as if this algorithm has finished the learning process. The other algorithm

must pass through all possible states and update her Ql,i and Qp,i matrices. Then, I compare if, given a particular

state, the argmax of the long run of both Ql,i and Qp,i matrices matches with the argmax of the theoretical Ql,i
and Qp,i matrices. If verifying Nash Equilibrium, the states for comparison are the actions played during the first

1,000 iterations after convergence. Contrary, if checking for Subgame Perfect Nash Equilibrium, the comparison

will be made for every possible state, independently if that state is ever reached during those 1,000 iterations.

5Calvano et al., 2020 calculate differently this metric. In particular, π̃ is a one-period-profit. It is the profit obtained by the algorithm upon

convergence.

14

When the algorithms do not manage to play optimally, they are suffering an opportunity cost for not playing

their best response. The Q-loss metric quantifies this cost:

Qi-loss =
qTi (ai = arg maxQTi |s)− qLRi (ai = arg maxQLRi |s)

qLRi (ai = arg maxQLRi |s)
, (34)

where qTi (.) is the reward of playing the argmax of the theoretical Qi matrix given the state s (best response

reward), and qLRi (.) is the reward of playing the argmax action of the long run Qi matrix given the state s. But

each algorithm has two Qi matrices, one for the location problem and one for the price problem. So, the Qi−loss

metric has to consider the two possible losses of not playing the best response in the location and the price

problem. I define the aggregated Qi−loss metric as the sum of Qp,i−loss and Ql,i−loss.

7. RESULTS

For the results, I saved the actions played and the profits obtained by each algorithm for the first 1,000 periods

after convergence. If the experiment does not converge, I save the same elements for the last 1,000 iterations of

the 20,000,000 iterations. Also, I saved the final Ql,i and Qp,i matrices for both algorithms. So, unless otherwise

clarified, I used this database.

Convergence All the 100 experiments of the 36 simulations converge.

Long run action Although the argmax of the Ql,i and Qp,i matrices remains stable for every state in all the

experiments of each simulation, the algorithms do not necessarily converge to play a single action6. That is to

say, during the 1,000 periods after convergence, they do not necessarily play the same action. Figure 7a displays

the fraction of the simulations that converge to a unit action cycle. Figure 7b displays the average action cycle

length in those experiments where the action cycle duration is larger than one.

Insert Figure 7 here.

In the southwest corner of figure 7a, the learning process is slow (small α), and also the algorithms randomize

their actions more (small β). Both factors affect the probability of reaching a unit action cycle. Indeed, when both

algorithms always randomize their actions (β = 0), they never reach a unit action cycle. For others parameter

configurations, the algorithms, at best, converge in the 70% of the simulation.

The bar reference in figure 7b is centered in very high values because of the large action cycles length in

those configurations with β = 0. In contrast, in the other parameter configurations, the action cycle length barely

exceeds 25 actions in the lowest value of α, and 7 actions in the rest of the simulations.

Presenting the results of all the simulations including those with β = 0 could be seen as erroneous. Also,

the results of those simulations could be seen as irrelevant because the algorithms are always randomizing

their actions. Moreover, one can argue that including those simulations changes the limits in the heatmaps’

reference color bar, making harder the interpretation. However, the benefits of including them are greater than

the costs. In particular, the results of those simulations provide an upper or lower limit that is useful in the

figures’ interpretation. In that sense, comparing the results of every simulation with β 6= 0 with those with β = 0

answers the question of how better is the algorithms’ performance when they can choose optimally than when

they cannot.

6In what follows, I will used as synonyms the following terms: converge to play a single action, converge to an action cycle of length one

and converge to a unit action cycle.

15

The convergence to a unit action cycle is not a guarantee of playing a particular action. Figure 8a is a

histogram of the action played on those unit action cycles. Over all the experiments of the 36 configurations, in

30.66% of those simulations, the algorithms converge to play a single action. In more than 70% of this 30.66%,

each algorithm set a price equal to 2.08, and both are located in the middle of the segment. This is the mode

of distribution. The second most repeated unit action cycle is the one where both algorithms set a price equal

to 1.66, and they locate at the middle of the segment. So, the two most frequent actions are those where both

algorithms are minimally differentiated and set a supra-competitive price.

Note that the equilibrium {(0.5, 2.083); (0.5, 2.083)} is virtually the collusive one (see section 6). Indeed, the

price grid do not include the collusive price because of the few points inside the grid. So, a price equal to 2.083

is the closest one to the collusive price of 2.25.

Insert Figure 8 here.

Figure 8b shows the fraction of the simulation where the action played in the unit action cycle is the mode

distribution of the actions played in cycles of length one (in this case {(0.5, 2.083); (0.5, 2.083)}. The levels on

this heatmap are very similar to the unit action cycle heatmap levels. In that sense, for some configurations of

(α, β), it is not only more probable to reach a unit action cycle but also to play the most frequent action.

Profits Figure 9a plots the evolution of π̄t as a function of time (t) for my representative simulation. For

building this figure, I rerun the simulation, saving the algorithms’ one-period profits from the very beginning.

Due to the high volatility of the profits, I calculate the simple moving average7 (SMA) of the series. Figure 9b

displays the SMA of the profits as a function of time (t).

Insert Figure 9 here.

It is clear from the figures that by the repetition of the game, the algorithms manage to get higher profits.

Figure 10 displays the boxplot of the extra profit gain for the representative simulation (10a) and the average

between experiments of the extra profit gain of one algorithm, as a function of α and β (21a).

Insert Figure 10 here.

The performance of the algorithms in the representative simulation has very little variance. In almost every

experiment, ∆ is almost 0.9. Only in three experiments each algorithm obtains a profit that seems to be an

outlier respect of the ∆ distribution.

As expected, the average extra profit gain is negative when the algorithms always randomize their actions

(β = 0). However, when β 6= 0, the average extra profit gain is greater than 0.32 for the lowest values of α and

greater than 0.57 in the rest of the simulations.

Theoretical Q-matrix Figure 11a displays the evolution of the fraction of the simulations in which the

algorithms converge to a Nash Equilibrium. Figure 11b plots the evolution of the aggregated Q-loss metric. Both

plots are for the representative simulation. For making both figures, I rerun the simulation, saving, from the

very beginning, the actions played by both algorithms in each iteration. Due to the significant volatility of both

variables, I only plot the simple moving average8 of each time serie.

7I take a 5,000 window period. However, the results are robust to changes in the window length.
8I take a window period of 5,000 iterations.

16

Insert Figure 11 here.

As the iterations go by, the figure shows a clear pattern in the learning process. In particular, the fraction of

the simulation that converges to a NE grows, and the aggregated Q-loss decreases.

Figure 12a displays the fraction of the simulations where the algorithms converge to a Nash Equilibrium.

Figure 12b plots the aggregated Q-loss for one algorithm.

Insert Figure 12 here.

Keeping aside the configurations with β = 0, in most of the other configurations, especially those with greater

α, the algorithms mostly play a NE. That is to say, the actions chosen are the optimal response to the action

played by the competitor. So, the minimal differentiation and the supra-competitive prices are not the results of

luck and randomness. On the contrary, by the repeated play, the algorithms were able to learn that by playing

that way, both are better.

I also check for the fraction of the simulation that converges to a PSNE. However, that equilibrium is never

achieved. The non-convergence into PSNE is not surprising. Perfect Subgame Nash Equilibrium is very demanding.

The algorithms must respond optimally in states that maybe are never be reached.

Collusion Before analyzing the existence of a deviation and punishment scheme, it is necessary to verify the

non-existence of supra-competitive outcomes in the no-memory scenario and the positive relation between ∆

and the level of patience of the algorithms.

No-memory When the algorithms have no memory, there is no possibility of collusion because there is

no way they can punish deviations. Following Calvano et al., 2020, I modelled the no-memory scenario as a

simulation with δ = 0. Additionally, the Ql,i matrix is reduced only to its action space dimension. Because there

is no memory, the algorithms do not remember past actions. However, when choosing a price, they do know the

current locations. Consequently, the Qp,i do not suffer any changes. The new cardinality of the Ql,i matrix is

|Ql,i| = |Al| = Nl ×Np = 3× 7 matrix. It remains with two dimensions because when choosing the location, the

algorithms continue to internalize the next price choice.

The value of the exploration parameter β remains the same (this implies that the times an action is played

randomly is now greater). Figure 13 displays the extra profit gain when the algorithms have no memory.

Insert Figure 13 here.

As expected, every point in the ∆ distribution when the algorithms have no memory is below the minimum

value of the ∆ distribution when the algorithms do have memory (see figure 10a). In more than 75% of the

simulation, the extra profit gain is negative. The negative values correspond to profit values less than the one of

SPNE. Nevertheless, the extra profit gain distribution does not reach the lowest possible value of -0.8, which

corresponds to Bertrand’s Nash Equilibrium profit.

Respect figure 13b, the average extra profit gain values are notably less when the algorithms have no memory.

In this scenario, there is no possible collusion. Consequently, the algorithms only manage to obtain a profit that

is, at best, the one of SPNE.

17

Average Extra Profit Gain ∆ as a function of the discount factor δ Following the Folk-theorem, equilib-

riums, where the algorithms obtain profits higher than the competitive one, are sustainable for levels of patience

greater than a minimum threshold. In that sense, a positive relationship exists between the maximum profit an

algorithm can receive and her future payoff valoration9. For this analysis, I run the representative simulation for

different values of δ. In particular, I take Nδ = 20 equaled spaced values from the grid {0.0, ..., 0.99}. The figure

14 displays the evolution of each algorithm’s average extra profit gain as a function of the discount factor δ.

Insert Figure 14 here.

For both algorithms, the plot confirms the positive relation between the supra-competitive profits and the

level of patience.

Deviations and Punishments To check whether the supra-competitive outcomes are part of an implicit

collusion agreement between the algorithms and not mere results of luck and randomness, I verify the existence

of a deviation and punishment scheme.

Starting from the long-run action played by the algorithms, I force one of them to deviate from her optimal

action. In particular, she carries on a price reduction without changing her past location. If the long-run action is

not a unique pair of location and price, the deviation is forced at each point of the action cycle. Then, for each

time period, I take the average of the responses.

When the action cycle is of length one, the algorithms never choose to play the lowest price (pi = 0). However,

it is sometimes played in some of the other action cycles. Playing the lowest price is a problem because there is

no possible price reduction in those cases. The figure 15 shows the fraction of the simulation where the minimum

price is played during the action cycle.

Insert Figure 15 here.

As was expected, the simulations with β = 0 are the ones with more quantity of experiments in which

the action cycle includes the minimum price. This fraction of the simulation is reduced when the algorithms

choose their actions optimally more frequently (bigger β) and when the learning process is faster (bigger α).

Nevertheless, for every parameter configuration, there is at least one experiment where, in the action cycle at

which the algorithms converge to play, the algorithms set the minimum price. In other words, the number of

experiments, where p = 0.0 is included in the action cycle, is always grater than cero for every combination of α

and β.

There are two options10 to implement the deviation and punishment analysis in those cases. The first one

is to leave those experiments out of the sample. The second one is to start the analysis from the rest of the

points inside the action cycle and skip starting from that point. Each of the options have some drawbacks. On

one hand, the experiment-exclusion alternative cannot be implemented when the fraction of the simulations

with p = 0.0 ∈ the action cycle is 100%. So, this alternative is impossible when β = 0. Also, there are some

9However, this positive relationship is not necessarily monotone in a repeated hotelling game. For example, see Chang, 1992.
10Forcing a location deviation may be a third option. In that case, all deviations would have to be of location type. No analysis is possible

if in some experiments the cheating algorithm implements a location deviation and in others a price deviation. However, even forcing all

deviations to be of location type, neither the deviation’s interpretation nor the algorithms’ response is straightforward. Moving away without

changing the price is not always profitable. In this sense, an algorithm is forced to implement a location deviation that is sometimes not

rational. Finally, a fourth option can be forcing a simultaneous location and price deviation. In other words, the cheating algorithm is forced

to undercut its rival’s price and also to move in the location grid. However, this alternative faces the same difficulties as the third one. Also, it

is less clear the interpretation of the algorithms’ response because both variables moved at the same time during the deviation.

18

parameters configuration where the fraction of the simulations with p = 0.0 ∈ the action cycle is less that 100%,

but rose very high values. In those cases, excluding that fraction of the simulation will leave the simulation with

few experiments.

On the other hand, in the point-avoidance alternative I am not cutting off some experiments from the

simulations, but rather I am cutting off some played actions within the experiments. Note that in the experiments

in which p = 0.0 /∈ action cycle both alternatives are the same. However, in all simulations, there is at least one

experiment where p = 0.0 ∈ action cycle. Therefore, when analyzing the mean response of price and location

after a deviation, one is averaging the response between experiments that include p = 0.0 in the action cycle

with experiments that do not.

I decided to implement the first option. In the most interesting simulations, where the values of α and

β are far from their lowest grid’s values, the number of excluded experiments is not too large. Also, playing

p = 0.0 is not economically interesting. That action is dominated by setting another price. When an algorithm

chooses p = 0.0, the reward is always zero. But if she chooses some p > 0 the payoff is strictly positive for some

equilibriums. Consequently, the fact that the algorithms set p = 0, 0 appears to be more of a learning flaw than

an optimal response. For all these reasons, I prefer to work only with experiments in which the algorithms do

not choose to play p = 0, 0. After discarding the experiments where pi = 0 is played, I keep with 93% of the

representative simulation.

Figure 16 display the evolution of the average, between experiments, of the price (panel 16a) and location

(panel 16b) played by both algorithms after one deviates in the representative simulation.

After some periods of punishment, the algorithms manage to return to the price played before the deviation

occurred.

Figures 17 and 18 display the boxplot of the price and location change for both algorithms after the deviation

is forced in the representative simulation.

Insert Figure 16 here.

Insert Figure 17 here.

Insert Figure 18 here.

8. ROBUSTNESS CHECKS

In this section, I repeat the analysis of the section 7 but extending the number of available prices inside the

price grid (section 8.1), the number of available locations in the location grid (section 8.2), and introducing

relocalization costs (section 8.3). In this way, I probe that the results do not depend on the particular action

space of the baseline configuration. Also, that the results are robust to the introduction of relocalization costs.

8.1 More prices

I define Np = 9. The cardinality of the action space when choosing location is now |Al| = Np ×Nl = 9× 3 = 27.

On the other hand, the cardinality of the action set when choosing price now is |Ap| = Np = 9. Respect the state

19

space: |Sl| = |Al| × |Al| = 27× 27 = 729, and |Sp| = |Nl| × |Nl| = 3× 3 = 9. Finally, both Ql,i and Qp,i matrices

now have |Ql,i| = |Sl| × |Al| = 729× 27 = 19, 683 and |Qp,i| = |Sp| × |Ap| = 9× 9 = 81 elements.

All the benchmark situations’ price and profit values remain the same. The same is for α and β grid. So, I run

36 simulations again but now with a more dense price grid. Each experiment is ran for T = 20, 000, 000 periods

or until convergence.

Results

Convergence All the experiments of the 36 simulations converge.

Long-run action Figure 19 displays the fraction of the simulation that converges to a unit action cycle

(panel 19a) and the average action cycle length of those simulations that do not converge to a unit action cycle

(panel 19b). Apart from those configurations with β = 0, the configurations with the lowest value of α never

converge to a unit action cycle.

Insert Figure 19 here.

The maximum fraction of simulations that converges to a unit action cycle for a certain parameter config-

uration is reduced with respect to the baseline configuration. At best, the algorithms converge in 55% of the

simulations. Moreover, the action cycle length of those experiments where the algorithms do not converge to a

single action play increased, especially when β = 0. That was to be expected because, in those configurations,

the algorithms always randomize their actions. So, if the action space is bigger, the action cycle will also be

larger. The average action cycle length is less than 31 for the configuration with the minimum value of α, and

less than 10 for the rest of the simulations.

Figure 20a is the action played histogram in those unit action cycle. Figure 20b is the fraction of the

simulations where the algorithms converge to a unit action cycle where the tuple of the algorithms’ actions is

equal to the mode of the action-play distribution.

Insert Figure 20 here.

From all the experiments of the 36 simulations, in only 23.41% of those, the algorithms converge to play a

unit action cycle. In almost half of those 23.41%, both algorithms locate at the middle of the segment and set a

price of 2.18. Note that this equilibrium is virtually the collusive one (see section 6). Indeed, the price grid do

not include the collusive price because of the few points inside the grid. So, a price equal to 2.18 is the closest

one to the collusive price of 2.25.

So, similar to the results in section 7, the algorithms choose the same location in the two most frequent

actions. Also, they set a supra-competitive price but not the highest one. However, the fraction of the simulation

where the algorithm converges to a unit action cycle is reduced from 30.66% to only 23.41%.

Respect figure 20b, from those simulations where the algorithms converge to a unit action cycle, the fraction

where the algorithms are playing {(2.18, 0.5), (2.18, 0.5)} is sensitive to the value of α. In particular, the probability

of converging to a unit action cycle playing the distribution mode is higher for higher values of α. Surprisingly, it

is also higher for lower values of β.

20

Long-run profits Figure 21a displays the distribution over the experiments of the representative simulation

of the extra profit gain. As in section 7 (see figure 10a), the hole distribution is above the null value (∆ = 0)

corresponding to the profits of PSNE. However, with a larger action space (Np = 9), the distribution has

significantly more variance.

Figure 21b is the heatmap of the average, between experiments, of the extra profit gain as a function of α

and β. The heatmap is virtually identical to the one in section 7 (see figure 10b). In that sense, besides having a

larger action set and, so, a more challenging learning process, the algorithms obtain supra-competitive profits in

almost every parameter configuration. As expected in the configuration with β = 0, the extra profit gain is lower

because the algorithms always randomly pick their actions.

Insert Figure 21 here.

Theoretical Q-matrix Figure 22a displays the fraction of simulations converging to a Nash Equilibrium.

Figure 22b plots the aggregated Q-loss for an algorithm as a function of α and β. The algorithms never converge

to a Subgame Perfect Nash Equilibrium.

Insert Figure 22 here.

The algorithms manage to play optimally besides having a bigger action space. The large fraction of

simulations that converge to a NE implies that the minimum differentiation and the supra-competitive prices are

an optimal response to the optimal action of the competitor.

As expected, the lowest values of convergence to a NE and the highest values of aggregated Q-loss corresponds

to the parameter configurations with β = 0.

Collusion. Deviation and punishment Figure 23 shows the fraction of the simulations where the minimum

price is played during the action cycle.

Insert Figure 23 here.

Figure 24 displays the evolution of the average, between experiments, of the price (panel 24a) and location

(panel 24b) played by both algorithms after one deviates in the representative simulation.

Insert Figure 24 here.

After some periods of punishment, the algorithms manage to return to a supra-competitive price as the one

played before the deviation occurred.

Figures 25 and 26 display the boxplot of the price and location change for both algorithms after the deviation

is forced in the representative simulation.

Insert Figure 25 here.

Insert Figure 26 here.

21

8.2 More locations

I define Nl = 5. With this modification, but with the other parameter values remaining the same as in Section 7,

the segment is still fully covered in the collusive benchmark scenario. However, the aggregeated collusive profit

is now π = 2.4375 (see section 6). Consequently, the benchmark values of ∆ do not remain the same.

Replacing the new values in the expression for ∆:

∆ =
π̃ − 0.5

0.71875
. (35)

The figure 27 presents the new grid for ∆ with some benchmark values.

Insert Figure 27 here.

The other benchmark situations’ price and profit values remain the same.

This modication changes the cardinality of the action and state sets. Now the cardinality of the action space

when choosing location is |Al| = Np×Nl = 7× 5 = 35. On the other hand, the cardinality of the action set when

choosing price remains the same |Ap| = Np = 7. Respect the state space: |Sl| = |Al|×|Al| = 35×35 = 1, 225, and

|Sp| = |Nl| × |Nl| = 7× 7 = 49. Finally, both Ql,i and Qp,i matrices now have |Ql,i| = |Sl| × |Al| = 1225× 35 =

42, 875 and |Qp,i| = |Sp| × |Ap| = 49× 7 = 343 elements.

The α and β grid remain the same as the previous robustness checks. So, I run 36 simulations again but now

with a more dense location grid. Each experiment is ran for T = 20, 000, 000 periods or until convergence.

Results

Convergence All the experiments of the 36 simulations converge.

Long-run action Figure 28 display the fraction of the simulations that converges to a unit action cycle

(panel 28a) and the average action cycle duration of those simulations that do not converge to a unit action cycle

(panel 28b). There is a similarity with the previous robustness check with more prices. In both setups, there

are several simulations where the algorithms do not manage to converge to an action cycle of length one in any

experiment, apart from the ones with β = 0. These simulations correspond to low values of α in both setups. So,

when the learning process is slow and the action space is expanded, the convergence to a unit action cycle is

tougher.

Insert Figure 28 here.

Note that, at best, the algorithms converge to a unit action cycle in less than 30% of a simulation. This value

is less than the 70% achieved in section 7 (see figure 7a) and also less than the 50% of section 8.1 (see figure

19a). This is as expected because besides in both robustness checks (section 8.1 and section 8.2) the action space

is enlarged; the first one is still smaller than the second one. Also, by looking at figure 28a, there is no clear

pattern in the levels. Indeed, the highest value is not achieved in the northeast corner but in the northwest one.

Figure 28b is very similar to the one shown in section 7 (see figure 7b). However, the values in the reference

bar are higher. In particular, with a more extensive action space, there are more possible action combinations.

So, as expected, the average action cycle length is now greater. When β 6= 0 and α take its minimal value, the

average cycle length is at most equal to 60. For the rest of the simulations, the average length is always less than

17.

22

Figure 29a is the action played histogram in those unit action cycles. The plot 29b is the fraction of the

simulations where the algorithms converge to a unit action cycle and play the mode of the action-played

distribution.

Insert Figure 29 here.

In 10.16% of all the experiments of the 36 simulations, the algorithms converge to play a single action. In

16% of this 10.16%, the algorithms choose not to differentate and to set a price above the competitive one. As in

section 7, the most frequent action played is {(2.083, 0.5); (2.083, 0.5)}. However, the fraction of simulations that

converge to a unit action cycle is reduced to only 10.16%. In section 7 this value was 30.66% (see figure 8a) and

in section 8.1, was 23.41% (see figure 20a). So, by enlarging the action space, the fraction of the simulations

where both algorithms converge to an action cycle of a single action is reduced.

In contrast with section 7 and section 8.1, where the most frequent equilibrium in the unit action cycles was

the collusive one, in 29a it is not. The collusive equilibrium corresponds to the second and third most frequent

equilibrium, but not the first one. However, the reason behind this fact is discretization. Indeed, the algorithms

do not lose demand for choosing the locations equal to the middle point of the segment and not the locations

{0.25, 0.75}. Regardless of whether the locations of the algorithms are {0.5, 0.5} or {0.25, 0.75}, the most-near

collusive price is the same and at that price the segment is fully covered.

With respect to figure 29b, the fraction of the simulations that converges to a unit action cycle equal to the

mode of the distribution is notably reduced. Also, in contrast with the relationship established in the section 7,

now there is no clear pattern. There is not a clear pattern where there is more chance for specific configurations

to converge to a unit action cycle and to be playing the mode of the distribution.

Long-run profits Figure 30a displays the distribution of the extra profit gain for each algorithm for the

representative simulation. The mean of each distribution is significantly below the one displayed in the other

sections (see figure 10a in section 7 and figure 21a in section 8.1). Also, the minimum and maximum values of

the distribution are now farther apart and the distribution presents a greater variability. However, as in section 7

and 8.1, the hole distribution is above the competitive benchmark value of ∆ = 0.

Insert Figure 30 here.

The main difference between figure 30b and the one in section 7 (see figure 10b) is about the maximum

value. Here, the algorithms, at best, obtain an average extra profit of 0.6. In section 7, the maximum value is 0.8.

Theoretical Q-matrix Figure 31a displays the fraction of simulations converging to a Nash Equilibrium for

a grid of values of α and β. Figure 31b displays the aggregated Q-loss of one algorithm. As in section 7, Subgame

Perfect Nash Equilibrium is never achieved.

Insert Figure 31 here.

Although the action space is greater, although less fraction of the simulations converge to a unit action cycle,

the algorithms manage to play optimally in most cases.

23

Collusion. Deviation and punishment Figure 32 shows the fraction of the simulations where the minimum

price is played during the action cycle.

Insert Figure 32 here.

Figure 33 display the evolution of the average, between experiments, of the price (panel 33a) and location

(panel 33b) played by both algorithms after one deviates in the representative simulation.

Insert Figure 33 here.

After some periods of punishment, the algorithms manage to return to a supra-competitive price as the one

played before the deviation occurred.

Figures 34 and 35 display the boxplot of the price and location change for both algorithms after the deviation

is forced in the representative simulation.

Insert Figure 34 here.

Insert Figure 35 here.

8.3 Relocalization costs

In this section, I repeat the analysis of section 7 but now introduce relocalization costs. Now, the algorithms will

suffer a quadratic payment according to the distance they move apart from their previous location. Instant profit

is now defined as:

πi(pi,t, li,t, pj,t, lj,t) = (pi,t − ci) ∗Di,t −RC(li,t, li,t−1) (36)

where RC(li,t, li,t−1) is the relocation cost function. In particular, it is a quadratic function of the number of

places within the location grid that the firm moves apart from its location in the previous period:

RC(li,t, li,t−1) = 0.25 ∗ (number of locations the algorithm moves)2 (37)

Note that the algorithm suffer this cost when choosing locations, but not when choosing prices. So, the

instant profit used in the Ql,i updating will be the one given in equation 36, and the instant profit used in the

Qp,i updating will be the one used in the baseline configuration (see equation 4).

The introduction of relocalization costs do not modify the benchmark equilibrium values. They remain the

same as in section 7 and in section 8.1. Neither it affects the cardinality of the action and state spaces, nor the

dimensions of both Ql,i and Qp,i matrices. The α and β grid remain the same as in the previous robustness

checks. So, I rerun 36 simulations. Each experiment is ran for T = 20, 000, 000 periods or until convergence.

Results

Convergence All the experiments of the 36 simulations converge.

24

Long-run action Figure 36 displays the fraction of the simulation that converges to a unit action cycle

(panel 36a) and the average action cycle length of those simulations that do not converge to a unit action cycle

(panel 36b).

Insert Figure 36 here.

The presence of relocalization costs reduces the incentives to change location. In consequence, the algorithms

prefer changing their price rather than their location. This modification increases the incentives to collude for

several reasons. First, the fact that the algorithms prefer not to change location is like an action space reduction

because some actions are virtually discarded. The action space reduction simplified the learning process of the

algorithms and in consequence, increases the probability of convergence to a supra-competitive outcome. Second,

the introduction of relocalization costs reduces the incentives for cheating because it increases the punishment.

The possibility of differentiating reduces the price punishment. But now, with less incentives to move across

locations, this punishment is more severe.

The relocalization cost introduction increases the fraction of simulations that converge to a unit action cycle

respect to the results obtained in section 7 (see figure 7a). In section 7, the algorithms at best converge in 70%

of the simulation, now this value grows to almost 90%.

Figure 37a is the action played histogram of the unit action cycles. From all the experiments of the 36

simulations, in 39.61% of those, the algorithms converge to play a single action. This value represents an increase

respect to 30.66% achieved in section 7 (see figure 8a), to 23.41% in section 8.1 (see figure 20a), and to 10.16%

in section 8.2 (see figure 29a). In more than 80% of these 39.61%, the algorithms choose not to differentiate

and to set a price equal to 2.08. As it was mentioned in section 7, this equilibrium is the collusive one.

Figure 37b is the fraction of the simulations that converge to play a unit action cycle equal to the action-played

distribution mode. The introduction of the relocalization costs increases the figure’s values respect the ones

displayed in the baseline configuration figure. In section 7 the highest value was 60% (see figure 8b). Now it is

near 80%.

Insert Figure 37 here.

Long-run profits 11 Figure 38a displays the boxplot of the extra profit gain distribution. The figure is very

similar to the one in section 7 (see figure 10a). Both distributions are centered in a very high value, both have

very little variance and only a few outliers. However, the minimum value in figure 38a (a little bit less than 0.55)

is above the minimum value in figure 10a (near 0.3).

Insert Figure 38 here.

Theoretical Q-matrix Figure 39 display the fraction of simulations converging to a Nash Equilibrium (panel

39a) and the aggregated Q-loss (panel 39b) for a grid of values of α and β. Subgame Perfect Nash Equilibrium is

never achieved.

Insert Figure 39 here.

11To simplify the comparison respect to the other model specifications, the profit series will be the one obtained without subtracting the

relocalization costs (see equation 4).

25

Besides introducing relocalization costs, the algorithms manage to play a NE. In that sense, they avoid being

stucked in a non-optimal action-play. The relocalization costs could change the incentives of the algorithms and

force them to play a non-optimal action to avoid the cost of changing location. However, this is not the case. Both

algorithms play a NE in most of the simulations. Indeed, besides the configurations with β = 0, the minimum

heatmap value is 74. In section 7, the minimum value is 47 (see figure 12a). As expected, the configurations

with greater aggregated Q-loss are the ones with β = 0.

Collusion. Deviation and punishment Figure 40 shows the fraction of the simulations where the minimum

price is played during the action cycle.

Insert Figure 40 here.

Figure 41 displays the evolution of the average, between experiments, of the price (panel 41a) and location

(panel 41b) played by both algorithms after one deviates in the representative simulation.

Insert Figure 41 here.

The introduction of relocation costs reduces the incentives to punish a deviation. Thus, besides an algorithm

breaking the agreement and undercutting the price of its rival, the cheated algorithm does not penalize by

lowering its price. The absence of punishment is not a minor fact. Indeed, the equilibrium reached by the

algorithms cannot be said to be a collusive equilibrium because there is no underlying deviation and punishment

scheme. So, besides the fact that the most frequent outcome matches a collusive equilibrium, technically it is not.

Figures 42 and 43 display the boxplot of the price and location change for both algorithms after the deviation

is forced in the representative simulation. As was expected, the introduction of the relocalization cost reduces

the variance in the location response after the deviation.

Insert Figure 42 here.

Insert Figure 43 here.

The result in figure 41a is surprising because the algorithms do not suffer a price-change cost but rather a

location-change cost. So, after being cheated, the algorithms still have the power to change their price without

suffering an extra payment. Indeed, one might think that because of the relocalization cost, the algorithms are

sure that a punishment will be in terms of price and not in terms of location. So, one is expecting a big price

punishment in figure 41a, few line breaks in the average location response (figure 41b) and low variance in the

location response (figure 43). However, only the last two points occurred.

The theory indicates that the introduction of relocalization costs creates a more favorable environment for

collusion. Mainly because the relocalization cost reduces the incentives to switch locations after a deviation.

And so, it increases the price punishment. However, in figure 41a there is no such price punishment. However,

neither is the deviated algorithm undercutting prices during several periods. In the next period after deviation,

she returns to set a similar to the one pre-deviation.

One possible explanation of this phenomenon is a biased Q-matrix. Some actions’ rewards may be downward

biased because of the relocalization cost suffered in previous iterations. A second possible explanation is that the

relocalization cost may cause a decrease in the speed of response. In other words, after a deviation, the best

26

strategy of the cheated algorithm maybe is to let the storm pass. Following this idea, a price punishment occurs

only if the storm lasts too long. Figure 44 displays the evolution of the average response after a long deviation in

the representative simulation. For this analysis, the cheater algorithm is forced to undercut the other algotithms’

price during ten consecutive periods.

Insert Figure 44 here.

The evolution of the price response of the cheated algorithm is surprisingly slow. Only eight periods after the

deviation, its price undercuts the cheater’s price level (see figure 44a). Moreover, once the cheater is allowed

to change her price, she significantly rises it and the other algorithms follows it. In consequence, the price

punishment after a deviation is really short. However, this fact is not particular to this setup. Figure 16a, 33a,

and 24a also show a brief price punishment. On the other hand, besides the presence of relocalization costs, the

evolution of the location response is, surprisingly, more erratic than the price evolution.

Figures 45 and 46 display the boxplot of the price and location change for both algorithms after a long

deviation is forced in the representative simulation.

Insert Figure 45 here.

Insert Figure 46 here.

9. CONCLUSION

Algorithmic collusion is one of the main concerns on the antitrust agenda nowadays. Previous studies show that

two independent Q-Learning algorithms can reach supra-competitive outcomes in several settings (Ballestero,

2022; Calvano et al., 2020; Calzolari et al., 2021; Klein, 2019). However, all of these studies were limited to a

one-variable decision problem. The present paper is the first one that analyzes the emergence of algorithmic

collusion in a two-variable decision problem.

This paper analyze the competition between two Q-Learning algorithms in a Hotelling setting. In most

simulations, I found that two Q-Learning algorithms that repeatedly compete in a location-price game choose

not to differentiate and set a price greater than the competitive one. Moreover, the strategy that each algorithm

follows is, in most cases, the best response to the rival’s strategy. In other words, they are playing a Nash

Equilibrium. An underlying deviation and punishment scheme sustains this implicit agreement. So, if one

algorithm breaks the implicit agreement by undercutting its rival’s price, the other algorithm punishes the cheater.

However, the punishment is finite in time. So, after some iterations, both algorithms return to set a similar

supra-competitive price to the one set before the deviation. Summing up, the repeated competition and the

existence of a deviation and punishment scheme reduce the price competition and lead to equilibrium with

minimum differentiation and supra-competitive prices.

When the action space of the algorithms is augmented, the learning process is tougher. The convergence

towards playing a single action is less frequent. However, the most frequent equilibriums in those unit action

cycles, is still the one with minimum differentiation and supra-competitive prices. Also, the fraction of the

simulations where the algorithms converge to play a Nash Equilibrium is still high. Moreover, the deviation

and punishment scheme is still present because after one of the algorithms undercuts its rival’s price, the other

punishes the cheater.

27

When the algorithms suffer relocation costs when changing location, the performance of the algorithms

improved. The experiments are more likely to converge to a unit action cycle. As before, the most frequent

equilibrium in those unit action cycles is those with minimum differentiation and collusive prices. Moreover,

they play a NE in most simulations. So, they are playing optimally in most situations. However, the deviation

and punishment scheme is only present when the price deviation lasts for long periods. In that sense, if the

cheating is brief, the cheated algorithm prefers not to punish. But if the price undercutting lasts for many periods,

the cheated algorithm progressively lowers its price. Only after sufficient many periods, the cheated price is

lower than the cheter’s price. Surprisingly, the location response after a deviation is more erratic than the price

response.

The real world is far more complex than this stylized model, and firms are unlikely to use these simple

algorithms in their decision-making process. However, the transparency and the straightforward parameter

interpretation of the Q-Learning algorithms give useful insights. This results sheds light to a field that remains

obscure due to numerous black-box algorithms. Nevertheless, each new study has to be seen as a modest step

toward a better understanding about algorithmic collusion. However, the field is far from reaching a final word.

Indeed, each study raises new questions. For example, if the results also hold under different learning algorithms.

If the algorithms can also collude in a vertical differentiated model, under an uncertain environment or in a

circular city. All these questions remain open for further research.

28

REFERENCES

Asker, J., Fershtman, C., & Pakes, A. (2021). Artificial Intelligence and Pricing: The Impact of Algorithm Design,

National Bureau of Economic Research. https://www.nber.org/papers/w28535

Ballestero, G. (2022). Collusion and Artificial Intelligence: A Computational Experiment with Sequential Pricing

Algorithms under Stochastic Costs, RedNIE.

Brown, Z. Y., & MacKay, A. (2021). Competition in Pricing Algorithms, National Bureau of Economic Research.

http://www.nber.org/papers/w28860

Calvano, E., Calzolari, G., Denicolo, V., & Pastorello, S. (2020). Artificial intelligence, algorithmic pricing, and

collusion. American Economic Review, 110(10), 3267–3297. https://doi.org/10.1257/aer.20190623

Calvano, E., Calzolari, G., Denicolò, V., & Pastorello, S. (2019). Algorithmic Pricing What Implications for

Competition Policy? Review of Industrial Organization, 55, 155–171.

Calzolari, G., Calvano, E., LastNameDenicolò, V., & Pastorello, S. (2021). Algorithmic collusion with imperfect

monitoring. International journal of industrial organization, 79, 102712. https://www.sciencedirect.com/

science/article/pii/S0167718721000059

Chandak, Y., Theocharous, G., Kostas, J. E., Jordan, S. M., & Thomas, P. S. (2019). Learning action representations

for reinforcement learning. International conference on machine learning, 941–950. https://proceedings.

mlr.press/v97/chandak19a.html

Chang, M. H. (1992). Intertemporal product choice and its effects on collusive firm behavior. International

Economic Review, 773–793.

Chen, L., Mislove, A., & Wilson, C. (2016). An empirical analysis of algorithmic pricing on amazon marketplace.

25th international conference on Wolrd Wide Web, 1339–1349. https://dl.acm.org/doi/abs/10.1145/

2872427.2883089

CMA. (2018). Pricing algorithms, Competition and Market Authority. https://assets.publishing.service.gov.uk/

government/uploads/system/uploads/attachment_data/file/746353/Algorithms_econ_report.pdf

d’Aspremont, C., Gabszewicz, J., & J.-F. Thiss. (1979). On Hotelling’s "Stability in Competition". Econometrica,

47(5), 1145–1150.

Dogan, I., & Güner, A. R. (2015). A reinforcement learning approach to competitive ordering and pricing problem.

Expert Systems, 32, 39–48. https://doi.org/10.1111/exsy.12054

Harrington, J. E. (2018). Developing Competition Law for Collusion by Autonomous Artificial Agents. Journal of

Competition Law & Economics, 14(3), 331–363.

Kimbrough, S., & Murphy, F. (2009). Learning to collude tacitly on production levels by oligopolistic agents.

Computational Economics, 33(1), 47–78. https://doi.org/10.1007/s10614-008-9150-6

Klein, T. (2019). Autonomous algorithmic collusion: Q-learning under sequential pricing. Amsterdam Law School

Research. https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3195812

Li, X., Wang, J., & Sawhney, R. (2012). Reinforcement learning for joint pricing, lead-time and scheduling

decisions in make-to-order systems. European Journal of Operational Research, 221(1), 99–109. https:

//doi.org/10.1016/J.EJOR.2012.03.020

Mehra, S. K. (2016). Antitrust and the Robo-Seller: Competition in the Time of Algorithms. Minnesota Law Review,

204.

Moodley, P., Rosman, B., & Hong, X. (2019). Understanding structure of concurrent actions. International

Conference on Innovative Techniques and Applications of Artificial Intelligence, 11927 LNAI, 78–90. https:

//doi.org/10.1007/978-3-030-34885-4{_}6

29

https://www.nber.org/papers/w28535
http://www.nber.org/papers/w28860
https://doi.org/10.1257/aer.20190623
https://www.sciencedirect.com/science/article/pii/S0167718721000059
https://www.sciencedirect.com/science/article/pii/S0167718721000059
https://proceedings.mlr.press/v97/chandak19a.html
https://proceedings.mlr.press/v97/chandak19a.html
https://dl.acm.org/doi/abs/10.1145/2872427.2883089
https://dl.acm.org/doi/abs/10.1145/2872427.2883089
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/746353/Algorithms_econ_report.pdf
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/746353/Algorithms_econ_report.pdf
https://doi.org/10.1111/exsy.12054
https://doi.org/10.1007/s10614-008-9150-6
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3195812
https://doi.org/10.1016/J.EJOR.2012.03.020
https://doi.org/10.1016/J.EJOR.2012.03.020
https://doi.org/10.1007/978-3-030-34885-4{_}6
https://doi.org/10.1007/978-3-030-34885-4{_}6

OECD. (2017). Algorithms and Collusion: Competition Policy in the Digital Age. https://www.oecd.org/daf/

competition/Algorithms-and-colllusion-competition-policy-in-the-digital-age.pdf

Ohlhausen, M. (2017). ’Should We Fear the Things That Go Beep in the Night? Some Initial Thoughts on the

Intersection of Antitrust Law and Algorithmic Pricing’ Remarks from the Concurrences Antitrust in the

Financial Sector Conference. https://www.ftc.gov/news-events/news/speeches/should-we-fear-things-

go-beep-night-some-initial-thoughts-intersection-antitrust-law-algorithmic

Park, D., & Ryu, D. (2022). Supply Chain Ethics and Transparency: An agent-based model approach with Q-

learning agents. Managerial and Decision Economics, 1–7. https://doi.org/https://doi.org/10.1002/mde.

3597

Sanchez-Cartas, J., & Katsamakas, E. (2022). Artificial Intelligence, Algorithmic Competition and Market Struc-

tures. IEEE Access. https://ieeexplore.ieee.org/abstract/document/9684893/

Takahashi, H., Nishino, N., & Takenaka, T. (2018). Multi-agent Simulation for the Manufacturer’s Decision Making

in Sharing Markets. Procedia CIRP, 67, 546–551. https://doi.org/10.1016/J.PROCIR.2017.12.258

Tam, A. (2021). A Gentle Introduction to Particle Swarm Optimization. https://machinelearningmastery.com/a-

gentle-introduction-to-particle-swarm-optimization/

Vainer, J., & Kukacka, J. (2021). Nash Q-learning agents in Hotelling’s model: Reestablishing equilibrium.

Communications in Nonlinear Science and Numerical Simulation, 99, 105805. https://doi.org/10.1016/j.

cnsns.2021.105805

Waltman, L., & Kaymak, U. (2008). Q-learning agents in a Cournot oligopoly model. Journal of Economic

Dynamics and Control, 32(10), 3275–3293. https ://www.sciencedirect . com/science/article/pii/

S0165188908000183

Wang, H., & Yu, Y. (2016). Exploring multi-action relationship in reinforcement learning. Springer, 574–587.

https://doi.org/10.1007/978-3-319-42911-3{_}48

Watkins, C. J., & Dayan, P. (1992). Q-learning. Machine Learning, 8(3-4), 279–292. https://doi.org/10.1007/

BF00992698

Watkins, C. (1989). Learning from delayed rewards (Doctoral dissertation). King’s College. https://www.academia.

edu/download/50360235/Learning_from_delayed_rewards_20161116-28282-v2pwvq.pdf

Wieting, M., & Sapi, G. (2021). Algorithms in the Marketplace: An Empirical Analysis of Automated Pricing in

E-Commerce. papers.ssrn.com. https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3945137

Xie, M., & Chen, J. (2004). Studies on horizontal competition among homogenous retailers through agent-

based simulation. Journal of Systems Science and Systems Engineering 2004 13:4, 13(4), 490–505.

https://doi.org/10.1007/S11518-006-0178-7

30

https://www.oecd.org/daf/competition/Algorithms-and-colllusion-competition-policy-in-the-digital-age.pdf
https://www.oecd.org/daf/competition/Algorithms-and-colllusion-competition-policy-in-the-digital-age.pdf
https://www.ftc.gov/news-events/news/speeches/should-we-fear-things-go-beep-night-some-initial-thoughts-intersection-antitrust-law-algorithmic
https://www.ftc.gov/news-events/news/speeches/should-we-fear-things-go-beep-night-some-initial-thoughts-intersection-antitrust-law-algorithmic
https://doi.org/https://doi.org/10.1002/mde.3597
https://doi.org/https://doi.org/10.1002/mde.3597
https://ieeexplore.ieee.org/abstract/document/9684893/
https://doi.org/10.1016/J.PROCIR.2017.12.258
https://machinelearningmastery.com/a-gentle-introduction-to-particle-swarm-optimization/
https://machinelearningmastery.com/a-gentle-introduction-to-particle-swarm-optimization/
https://doi.org/10.1016/j.cnsns.2021.105805
https://doi.org/10.1016/j.cnsns.2021.105805
https://www.sciencedirect.com/science/article/pii/S0165188908000183
https://www.sciencedirect.com/science/article/pii/S0165188908000183
https://doi.org/10.1007/978-3-319-42911-3{_}48
https://doi.org/10.1007/BF00992698
https://doi.org/10.1007/BF00992698
https://www.academia.edu/download/50360235/Learning_from_delayed_rewards_20161116-28282-v2pwvq.pdf
https://www.academia.edu/download/50360235/Learning_from_delayed_rewards_20161116-28282-v2pwvq.pdf
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3945137
https://doi.org/10.1007/S11518-006-0178-7

ANNEX

3 posible

cases

Same firm

location

Different

firm

location

x∗ ∈ [0, 1]

x∗ /∈ [0, 1]

Case 2

Case 1:

Bertrand

Case 3

FIGURE 1: DEMAND CASES

0 l 1 =l 2 =0.5 1

u-p 1

u-p 2

u=2.5

C
S(

x)

FIGURE 2: DEMAND CASE 1: BERTRAND

l 1 =0 x*=0.2917 l 2 =1

u-p 1

u-p 2

u=2.5

C
S(

x)

l 1 =0 x*=0.6293 l 2 =1

u-p 1

u-p 2

u=2.5

FIGURE 3: DEMAND CASE 2

31

l 1 =0 l 2 =1

u-p 1

u-p 2

u=2.5

C
S(

x)

l 1 =0.5 l 2 =1

u-p 1

u-p 2

u=2.5

FIGURE 4: DEMAND CASE 3

Location choice problem Price choice problem

Q-matrix Ql,i Qp,i

Action space Al = L × P Ap = P
Action al ∈ Al ap ∈ Ap

State space Sl = {(L × P), (L × P)} Sp = L × L
State sl ∈ Sl sp ∈ Sp

TABLE 1: NOTATION USED IN EACH PROBLEM

In t = 1:

Update sl Choose l Update sp Choose p Update s′l Obtain πi Update Ql,i

In t = 2:

Update sl Choose l Update sp and s′p Update Qp,i Choose p Update s′l Obtain πi Update Ql,i

FIGURE 5: Q-MATRIX UPDATING TIMELINE

32

Algorithm 1 Pseudocode Q-Learning algorithms in a Hotelling model
Data: Setup parameters value

Initialization :Ql and Qp matrices

Initialization : Initial state s0 = {(locationi, pricei); (locationj , pricej)}

1 for t← 1 to T do

2 Set current state sl = {al,i, al,j} = {(li, pi), (lj , pj)}

3 Flip a coin = {random, optimal} with probabilities {ε, 1− ε}

4 Location choice problem:

if Coin = random then

Action: ai = {li, pi}with uniform distribution

else if Coin = optimal then
for all l in available locations

Choose pi such that al,i = {li, pi} = arg max(Ql,i(sl, al,i)

Compare all the arg max(Ql,i((sl, al,i)) and choose the li with the maxQl,i. Call this li as l∗i
end

end

5 Update current price state for the current price sp = {li, lj}

6 Update tomorrow price state for the past price s′p = {li, lj}
if t = 1 then

continue

else

Update Qp matrix for action ap,i = pi:

Qp,i (sp, ap,i)← (1− α) ·Qp,i (sp, ap,i) + α ·
[
π(sp, ap,i) + δ max

a′p∈Ap

Qp,i
(
s′p, a

′
p

)]
(38)

end

end

7 Price choice problem:

if Coin = random then

You already have the price

else if Coin = optimal then

Choose pi such that ap,i = pi = arg max(Qp,i(sp, ap,i))

end

end

8 Update tomorrow location state s′l = {al,i, al,j} = {(li, pi), (lj , pj)}

9 Obtain the profit πi(s′l) = π(li, pi, lj , pj)

10 /* Remember that this profit is the one that will be used in the Qp matrix

updating in the next iteration πi(s
′
l) = πi(sp, ap,i) */

11 Update Ql,i matrix:

Ql,i (sl, al,i)← (1− α) ·Ql,i (sl, al,i) + α ·
[
π(s′l) + δ max

a′l∈Al

Ql,i (s′l, a
′
l)

]
(39)

12 end

33

TABLE 2: TRANSPORTATION COST FOR EVERY COMBINATION OF FIRMS’ LOCATION

(A) Nl = 3

Locations TC = f1(.) + f2(.)

{0.0, 0.0} 1
3 ≈ 0.333

{0.0, 0.5} 5
96 ≈ 0.052

{0.0, 1.0} 1
12 ≈ 0.083

{0.5, 0.5} 1
12 ≈ 0.083

{0.5, 1.0} 5
96 ≈ 0.052

{1.0, 1.0} 1
3 ≈ 0.333

(B) Nl = 5

Locations TC = f1(.) + f2(.)

{0.0, 0.25} 109
768 ≈ 0.142

{0.0, 0.75} 31
768 ≈ 0.040

{0.25, 0.25} 7
48 ≈ 0.146

{0.25, 0.5} 37
768 ≈ 0.048

{0.25, 0.75} 1
48 ≈ 0.021

{0.25, 1.0} 31
768 ≈ 0.040

{0.5, 0.75} 37
768 ≈ 0.048

{0.75, 0.75} 7
48 ≈ 0.146

{0.75, 1.0} 109
768 ≈ 0.142

Notes: Each of the values of the tables was calculated following these steps. First, determine each firm’s demand. The second step is

divided into two. To calculate the total transportation cost for all the consumers at the left of firm i, evaluate
∫
(li − x)2dx = −(li − x)3/3

over the limits of the left-side firm i’s demand and multiply it with the consumer density: 1/(1− 0) = 1. For the right-side firm i’s demand,

evaluate
∫
(x − li)2dx = (x − li)3/3 over the corresponding right-side limits and multiply it with the consumer density: 1/(1 − 0) = 1.

Third, the aggregated transportation cost for firm i (fi(.)) is simply the sum of the total transportation cost for the two demand sides. Finally,

the total transportation cost (TC) is the sum of each firm’s aggregated transportation cost.

π̃ = πB = 0

∆ = −0.8

π̃ = πSPNE = 0.5

∆ = 0

π̃ = πC = 1.125

∆ = 1

FIGURE 6: ∆ GRID

0.5×10 −5 1×10 −5 1.5×10 −5 2×10 −5

0.05

0.1

0.15

0.2

0.25

10

20

30

40

50

60

70

βgrid

αg
rid

(A) %SIMULATION THAT CONVERGES TO ACTION CYCLE OF

LENGTH ONE

0 0.5×10 −5 1×10 −5 1.5×10 −5 2×10 −5

0.05

0.1

0.15

0.2

0.25

50

100

150

200

250

300

350

βgrid

αg
rid

(B) AVERAGE ACTION CYCLE LENGTH IN NO-UNIT ACTION CY-

CLES

FIGURE 7

34

(0.5, 2.08), (0.5, 2.08)

(0.5, 1.66), (0.5, 1.66)

(0.5, 2.08), (0.0, 1.66)

(0.0, 2.08), (1.0, 2.08)

(0.0, 2.08), (1.0, 1.66)

(1.0, 2.08), (0.0, 1.66)

(0.5, 2.08), (1.0, 1.66)

(0.0, 1.66), (0.0, 1.66)

(0.0, 1.66), (0.5, 2.08)

(0.0, 1.25), (1.0, 1.25)

(1.0, 1.66), (0.5, 2.08)

(0.0, 1.66), (1.0, 1.66)

(1.0, 1.66), (0.0, 2.08)

(1.0, 2.08), (0.0, 2.08)

(0.5, 1.66), (1.0, 1.25)

(0.0, 2.08), (0.5, 2.08)

(0.0, 2.08), (0.0, 2.08)

(1.0, 1.66), (0.0, 1.66)

(0.5, 1.25), (0.5, 1.25)

(0.0, 1.25), (0.0, 1.25)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

30.66 % of all the simulations

(A) ACTIONS PLAYED IN CYCLES OF LENGTH ONE

0.5×10 −5 1×10 −5 1.5×10 −5 2×10 −5

0.05

0.1

0.15

0.2

0.25

0

10

20

30

40

50

60

βgrid

αg
rid

(B) %SIMULATION THAT CONVERGES TO DISTRIBUTION’S

MODE

FIGURE 8

0 100k 200k 300k 400k

0

0.2

0.4

0.6

0.8

1 π1
π2
π Nash Bertrand
π PSNE

Iterations

(A) PROFIT EVOLUTION

0 100k 200k 300k 400k

0

0.2

0.4

0.6

0.8

1 π1
π2
π Nash Bertrand
π PSNE

Iterations

(B) SMA PROFIT EVOLUTION

FIGURE 9: PROFIT EVOLUTION

35

Δ1 Δ2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(A) REPRESENTATIVE SIMULATION

0 0.5×10 −5 1×10 −5 1.5×10 −5 2×10 −5

0.05

0.1

0.15

0.2

0.25

−0.2

0

0.2

0.4

0.6

0.8

βgrid

αg
rid

(B) AS A FUNCTION OF α AND β

FIGURE 10: EXTRA PROFIT GAIN

0 2M 4M 6M 8M 10M 12M 14M

25

30

35

40

45

50

55

Iterations

%
 o

f t
he

 si
m

ul
at

io
n

(A) NE EVOLUTION

0 2M 4M 6M 8M 10M 12M 14M
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Iterations

(B) AGGREGATED Q-LOSS EVOLUTION

FIGURE 11

0 0.5×10 −5 1×10 −5 1.5×10 −5 2×10 −5

0.05

0.1

0.15

0.2

0.25

0

10

20

30

40

50

60

70

80

90

βgrid

αg
rid

(A) %SIMULATION THAT CONVERGES TO A NE

0 0.5×10 −5 1×10 −5 1.5×10 −5 2×10 −5

0.05

0.1

0.15

0.2

0.25

0

0.05

0.1

0.15

0.2

βgrid

αg
rid

(B) AGGREGATED Q-LOSS

FIGURE 12

36

Δ1 Δ2

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

(A) REPRESENTATIVE SIMULATION

0 0.5×10 −5 1×10 −5 1.5×10 −5 2×10 −5

0.05

0.1

0.15

0.2

0.25

−0.35

−0.3

−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

βgrid

αg
rid

(B) AS A FUNCTION OF α AND β

FIGURE 13: NO MEMORY - EXTRA PROFIT GAIN

0 0.2 0.4 0.6 0.8
−0.2

0

0.2

0.4

0.6

0.8

δgrid

(A) FIRM 1

0 0.2 0.4 0.6 0.8
−0.2

0

0.2

0.4

0.6

0.8

δgrid

(B) FIRM 2

FIGURE 14: AVERAGE EXTRA PROFIT GAIN AS A FUNCTION OF δ

0 0.5×10 −5 1×10 −5 1.5×10 −5 2×10 −5

0.05

0.1

0.15

0.2

0.25

10

20

30

40

50

60

70

80

90

100

βgrid

αg
rid

FIGURE 15: FRACTION OF THE SIMULATIONS WITH p = 0.0 ∈ ACTION CYCLE

37

0 2 4 6 8

1.4

1.5

1.6

1.7

1.8

1.9

2

Firm 1 (cheater)
Firm 2

93 % of the simulation

Periods after deviation

(A) PRICE

0 2 4 6 8

0.485

0.49

0.495

0.5

0.505

0.51

0.515

0.52
Firm 1 (cheater)
Firm 2

93 % of the simulation

Periods after deviation

(B) LOCATION

FIGURE 16: FIRMS RESPONSE AFTER DEVIATION

0 1 2 3 4 5 6 7 8 9 10

−1.5

−1

−0.5

0

0.5

Periods after deviation

(A) FIRM 1

0 1 2 3 4 5 6 7 8 9 10

−1.5

−1

−0.5

0

0.5

Periods after deviation

(B) FIRM 2

FIGURE 17: BOXPLOT PRICE RESPONSE

0 1 2 3 4 5 6 7 8 9 10

−0.4

−0.2

0

0.2

0.4

Periods after deviation

(A) FIRM 1

0 1 2 3 4 5 6 7 8 9 10

−0.4

−0.2

0

0.2

0.4

Periods after deviation

(B) FIRM 2

FIGURE 18: BOXPLOT LOCATION RESPONSE

38

0.5×10 −5 1×10 −5 1.5×10 −5 2×10 −5

0.05

0.1

0.15

0.2

0.25

10

20

30

40

50

βgrid

αg
rid

(A) %SIMULATION THAT CONVERGES TO ACTION CYCLE OF

LENGTH ONE

0 0.5×10 −5 1×10 −5 1.5×10 −5 2×10 −5

0.05

0.1

0.15

0.2

0.25

100

200

300

400

500

βgrid

αg
rid

(B) AVERAGE ACTION CYCLE LENGTH IN NO-UNIT ACTION

CYCLES

FIGURE 19

(0.5, 2.18), (0.5, 2.18)
(0.0, 1.87), (0.5, 2.18)
(0.5, 2.18), (1.0, 1.87)
(1.0, 1.56), (0.5, 1.87)
(0.5, 1.87), (0.5, 1.87)
(1.0, 2.18), (0.0, 2.18)
(0.5, 2.18), (0.0, 1.87)
(0.0, 2.18), (1.0, 2.18)
(1.0, 1.87), (0.5, 2.18)
(0.5, 1.56), (0.5, 1.56)
(0.5, 1.87), (0.0, 1.56)
(1.0, 1.56), (0.0, 1.56)
(0.0, 1.87), (1.0, 1.87)
(1.0, 1.56), (1.0, 1.56)
(1.0, 1.25), (0.5, 1.56)
(1.0, 1.56), (0.0, 1.87)
(0.0, 1.56), (0.5, 1.87)
(0.5, 1.56), (1.0, 1.25)
(1.0, 1.87), (0.0, 2.18)
(0.5, 1.87), (1.0, 1.56)
(0.5, 1.25), (0.5, 1.25)
(1.0, 1.87), (0.0, 1.87)
(1.0, 2.18), (0.0, 1.87)
(0.0, 2.18), (1.0, 1.87)
(0.0, 1.87), (1.0, 2.18)
(0.0, 1.87), (0.0, 1.87)
(0.0, 1.56), (1.0, 1.56)
(0.5, 1.56), (0.0, 1.25)
(0.0, 1.56), (0.0, 1.56)
(0.0, 1.25), (1.0, 1.56)

0

0.1

0.2

0.3

0.4

0.5

23.41 % of all the simulations

(A) ACTIONS PLAYED IN CYCLES OF LENGTH ONE

0.5×10 −5 1×10 −5 1.5×10 −5 2×10 −5

0.05

0.1

0.15

0.2

0.25

0

5

10

15

20

25

30

35

40

βgrid

αg
rid

(B) %SIMULATION THAT CONVERGES TO DISTRIBUTION’S

MODE

FIGURE 20

39

Δ1 Δ2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(A) REPRESENTATIVE SIMULATION

0 0.5×10 −5 1×10 −5 1.5×10 −5 2×10 −5

0.05

0.1

0.15

0.2

0.25

−0.2

0

0.2

0.4

0.6

0.8

βgrid

αg
rid

(B) AS A FUNCTION OF α AND β

FIGURE 21: EXTRA PROFIT GAIN

0 0.5×10 −5 1×10 −5 1.5×10 −5 2×10 −5

0.05

0.1

0.15

0.2

0.25

0

10

20

30

40

50

60

70

80

90

βgrid

αg
rid

(A) %SIMULATION THAT CONVERGES TO A NE

0 0.5×10 −5 1×10 −5 1.5×10 −5 2×10 −5

0.05

0.1

0.15

0.2

0.25

0

0.1

0.2

0.3

0.4

0.5

βgrid

αg
rid

(B) AGGREGATED Q-LOSS

FIGURE 22

0 0.5×10 −5 1×10 −5 1.5×10 −5 2×10 −5

0.05

0.1

0.15

0.2

0.25

10

20

30

40

50

60

70

80

90

100

βgrid

αg
rid

FIGURE 23: FRACTION OF THE SIMULATIONS WITH p = 0.0 ∈ ACTION CYCLE

40

0 2 4 6 8

1.4

1.5

1.6

1.7

1.8

1.9

2

Firm 1 (cheater)
Firm 2

91 % of the simulation

Periods after deviation

(A) PRICE

0 2 4 6 8

0.48

0.49

0.5

0.51

0.52

0.53

0.54

0.55

0.56
Firm 1 (cheater)
Firm 2

91 % of the simulation

Periods after deviation

(B) LOCATION

FIGURE 24: FIRMS RESPONSE AFTER DEVIATION

0 1 2 3 4 5 6 7 8 9 10

−1.5

−1

−0.5

0

0.5

Periods after deviation

(A) FIRM 1

0 1 2 3 4 5 6 7 8 9 10
−1.5

−1

−0.5

0

0.5

Periods after deviation

(B) FIRM 2

FIGURE 25: BOXPLOT PRICE RESPONSE

0 1 2 3 4 5 6 7 8 9 10

−0.4

−0.2

0

0.2

0.4

Periods after deviation

(A) FIRM 1

0 1 2 3 4 5 6 7 8 9 10

−0.4

−0.2

0

0.2

0.4

Periods after deviation

(B) FIRM 2

FIGURE 26: BOXPLOT LOCATION RESPONSE

41

π̃ = πB = 0

∆ = −0.8

π̃ = πSPNE = 0.5

∆ = 0

π̃ = πC = 1.21875

∆ = 1

FIGURE 27: ∆ GRID WITH Nl = 5

0.5×10 −5 1×10 −5 1.5×10 −5 2×10 −5

0.05

0.1

0.15

0.2

0.25

5

10

15

20

25

βgrid

αg
rid

(A) %SIMULATION THAT CONVERGES TO ACTION CYCLE OF

LENGTH ONE

0 0.5×10 −5 1×10 −5 1.5×10 −5 2×10 −5

0.05

0.1

0.15

0.2

0.25

100

200

300

400

500

600

βgrid
αg

rid

(B) AVERAGE ACTION CYCLE LENGTH IN NO-UNIT ACTION

CYCLES

FIGURE 28

(0.5, 1.66), (0.5, 1.66)
(1.0, 2.08), (0.0, 2.08)
(0.25, 2.08), (0.75, 2.08)
(0.5, 1.66), (0.25, 1.66)
(0.75, 1.66), (0.75, 1.66)
(0.5, 2.08), (0.5, 2.08)
(0.75, 2.08), (0.25, 2.08)
(0.25, 2.08), (0.5, 2.08)
(0.5, 2.08), (0.25, 2.08)
(0.25, 1.66), (0.25, 1.66)
(0.75, 1.66), (0.25, 1.66)
(0.5, 2.08), (0.75, 2.08)
(0.25, 2.08), (1.0, 2.08)
(0.25, 1.66), (1.0, 1.66)
(0.75, 2.08), (0.5, 2.08)
(0.25, 1.66), (0.5, 1.66)
(0.25, 1.25), (0.75, 1.25)
(0.75, 1.66), (0.0, 1.66)
(0.0, 1.25), (1.0, 1.25)
(0.25, 2.08), (1.0, 1.66)
(0.5, 2.08), (1.0, 1.66)
(1.0, 2.08), (0.25, 2.08)
(0.0, 2.08), (1.0, 2.08)
(0.75, 2.08), (0.0, 2.08)
(0.0, 2.08), (0.75, 2.08)
(0.75, 2.08), (0.75, 2.08)
(0.0, 1.66), (0.75, 2.08)
(1.0, 1.66), (0.25, 2.08)
(0.5, 1.66), (0.75, 1.66)
(1.0, 1.66), (0.25, 1.66)
(1.0, 1.66), (0.5, 2.08)
(0.25, 1.66), (0.75, 1.66)
(0.75, 2.08), (0.0, 1.66)
(0.75, 1.66), (0.5, 1.66)
(0.75, 1.25), (0.25, 1.25)
(0.25, 2.08), (0.25, 2.08)
(0.0, 1.66), (1.0, 1.66)
(0.75, 1.66), (0.0, 1.25)
(0.0, 1.66), (0.75, 1.66)
(0.0, 1.66), (0.5, 2.08)
(0.5, 2.08), (0.0, 1.66)
(1.0, 2.08), (0.0, 1.66)
(1.0, 1.66), (0.0, 1.66)
(0.5, 1.25), (0.5, 1.25)
(0.0, 1.66), (0.0, 1.66)
(0.75, 1.25), (0.75, 1.25)
(1.0, 1.25), (0.0, 1.25)

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

10.16 % of all the simulations

(A) ACTIONS PLAYED IN CYCLES OF LENGTH ONE

0.5×10 −5 1×10 −5 1.5×10 −5 2×10 −5

0.05

0.1

0.15

0.2

0.25

0

2

4

6

8

10

12

βgrid

αg
rid

(B) %SIMULATION THAT CONVERGES TO DISTRIBUTION’S

MODE

FIGURE 29

42

Δ1 Δ2

0.2

0.4

0.6

0.8

1

(A) REPRESENTATIVE SIMULATION

0 0.5×10 −5 1×10 −5 1.5×10 −5 2×10 −5

0.05

0.1

0.15

0.2

0.25

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

βgrid

αg
rid

(B) AS A FUNCTION OF α AND β

FIGURE 30: EXTRA PROFIT GAIN

0 0.5×10 −5 1×10 −5 1.5×10 −5 2×10 −5

0.05

0.1

0.15

0.2

0.25

0

10

20

30

40

50

60

70

80

90

βgrid

αg
rid

(A) %SIMULATION THAT CONVERGES TO A NE

0 0.5×10 −5 1×10 −5 1.5×10 −5 2×10 −5

0.05

0.1

0.15

0.2

0.25

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

βgrid

αg
rid

(B) AGGREGATED Q-LOSS

FIGURE 31

0 0.5×10 −5 1×10 −5 1.5×10 −5 2×10 −5

0.05

0.1

0.15

0.2

0.25

10

20

30

40

50

60

70

80

90

100

βgrid

αg
rid

FIGURE 32: FRACTION OF THE SIMULATIONS WITH p = 0.0 ∈ ACTION CYCLE

43

0 2 4 6 8

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9
Firm 1 (cheater)
Firm 2

90 % of the simulation

Periods after deviation

(A) PRICE

0 2 4 6 8

0.47

0.48

0.49

0.5

0.51

0.52

Firm 1 (cheater)
Firm 2

90 % of the simulation

Periods after deviation

(B) LOCATION

FIGURE 33: FIRMS RESPONSE AFTER DEVIATION

0 1 2 3 4 5 6 7 8 9 10

−1

−0.5

0

0.5

1

Periods after deviation

(A) FIRM 1

0 1 2 3 4 5 6 7 8 9 10
−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

Periods after deviation

(B) FIRM 2

FIGURE 34: BOXPLOT PRICE RESPONSE

0 1 2 3 4 5 6 7 8 9 10

−0.4

−0.2

0

0.2

0.4

Periods after deviation

(A) FIRM 1

0 1 2 3 4 5 6 7 8 9 10

−0.4

−0.2

0

0.2

0.4

Periods after deviation

(B) FIRM 2

FIGURE 35: BOXPLOT LOCATION RESPONSE

44

0.5×10 −5 1×10 −5 1.5×10 −5 2×10 −5

0.05

0.1

0.15

0.2

0.25

10

20

30

40

50

60

70

80

βgrid

αg
rid

(A) %SIMULATION THAT CONVERGES TO ACTION CYCLE OF

LENGTH ONE

0 0.5×10 −5 1×10 −5 1.5×10 −5 2×10 −5

0.05

0.1

0.15

0.2

0.25

50

100

150

200

250

300

350

βgrid

αg
rid

(B) AVERAGE ACTION CYCLE LENGTH IN NO-UNIT ACTION

CYCLES

FIGURE 36

(0.5, 2.08), (0.5, 2.08)

(0.5, 1.66), (0.5, 1.66)

(0.0, 2.08), (1.0, 2.08)

(1.0, 2.08), (0.0, 2.08)

(0.5, 2.08), (0.0, 1.66)

(1.0, 1.25), (0.0, 1.25)

(0.5, 1.25), (0.5, 1.25)

(0.0, 1.25), (1.0, 1.25)

(0.0, 1.66), (0.5, 2.08)

(0.5, 2.08), (1.0, 1.66)

(0.0, 1.66), (1.0, 1.66)

(0.5, 1.66), (0.0, 1.25)

(1.0, 1.66), (0.0, 1.66)

(0.0, 1.66), (1.0, 2.08)

(1.0, 1.66), (0.5, 2.08)

(1.0, 1.66), (1.0, 1.66)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

39.61 % of all the simulations

(A) ACTIONS PLAYED IN CYCLES OF LENGTH ONE

0.5×10 −5 1×10 −5 1.5×10 −5 2×10 −5

0.05

0.1

0.15

0.2

0.25

0

10

20

30

40

50

60

70

βgrid

αg
rid

(B) %SIMULATION THAT CONVERGES TO DISTRIBUTION’S

MODE

FIGURE 37

45

Δ1 Δ2

0.55

0.6

0.65

0.7

0.75

0.8

0.85

(A) REPRESENTATIVE SIMULATION

0 0.5×10 −5 1×10 −5 1.5×10 −5 2×10 −5

0.05

0.1

0.15

0.2

0.25

−0.2

0

0.2

0.4

0.6

0.8

βgrid

αg
rid

(B) AS A FUNCTION OF α AND β

FIGURE 38: EXTRA PROFIT GAIN

0 0.5×10 −5 1×10 −5 1.5×10 −5 2×10 −5

0.05

0.1

0.15

0.2

0.25

0

20

40

60

80

100

βgrid

αg
rid

(A) %SIMULATION THAT CONVERGES TO A NE

0 0.5×10 −5 1×10 −5 1.5×10 −5 2×10 −5

0.05

0.1

0.15

0.2

0.25

0

0.05

0.1

0.15

0.2

βgrid

αg
rid

(B) AGGREGATED Q-LOSS

FIGURE 39

0 0.5×10 −5 1×10 −5 1.5×10 −5 2×10 −5

0.05

0.1

0.15

0.2

0.25

10

20

30

40

50

60

70

80

90

100

βgrid

αg
rid

FIGURE 40: FRACTION OF THE SIMULATIONS WITH p = 0.0 ∈ ACTION CYCLE

46

0 2 4 6 8

1.5

1.6

1.7

1.8

1.9

2

Firm 1 (cheater)
Firm 2

96 % of the simulation

Periods after deviation

(A) PRICE

0 2 4 6 8
0.485

0.49

0.495

0.5

Firm 1 (cheater)
Firm 2

96 % of the simulation

Periods after deviation

(B) LOCATION

FIGURE 41: FIRMS RESPONSE AFTER DEVIATION

0 1 2 3 4 5 6 7 8 9 10

−1

−0.5

0

0.5

Periods after deviation

(A) FIRM 1

0 1 2 3 4 5 6 7 8 9 10

−1

−0.5

0

0.5

Periods after deviation

(B) FIRM 2

FIGURE 42: BOXPLOT PRICE RESPONSE

0 1 2 3 4 5 6 7 8 9 10

−0.4

−0.2

0

0.2

0.4

Periods after deviation

(A) FIRM 1

0 1 2 3 4 5 6 7 8 9 10

−0.4

−0.2

0

0.2

0.4

Periods after deviation

(B) FIRM 2

FIGURE 43: BOXPLOT LOCATION RESPONSE

47

0 5 10 15

1.4

1.5

1.6

1.7

1.8

1.9 Firm 1 (cheater)
Firm 2

96 % of the simulation

Periods after deviation

(A) PRICE

0 5 10 15
0.485

0.49

0.495

0.5

0.505

0.51
Firm 1 (cheater)
Firm 2

96 % of the simulation

Periods after deviation

(B) LOCATION

FIGURE 44: FIRMS RESPONSE AFTER DEVIATION

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
−1.5

−1

−0.5

0

0.5

Periods after deviation

(A) FIRM 1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

−1.5

−1

−0.5

0

0.5

Periods after deviation

(B) FIRM 2

FIGURE 45: BOXPLOT PRICE RESPONSE

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

−0.4

−0.2

0

0.2

0.4

Periods after deviation

(A) FIRM 1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

−0.4

−0.2

0

0.2

0.4

Periods after deviation

(B) FIRM 2

FIGURE 46: BOXPLOT LOCATION RESPONSE

48

	Introduction
	Literature
	Economic environment
	Q-Learning
	Qi matrix updating
	Pseudocode
	Convergence

	Baseline parameter configuration
	Benchmark equilibriums and performance metrics
	Benchmark equilibriums
	Performance metrics

	Results
	Robustness checks
	More prices
	More locations
	Relocalization costs

	Conclusion

