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VALUING MORTALITY ATTRIBUTABLE TO PRESENT AND FUTURE EXTREME TEMPERATURES 
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This paper analyzes the effect temperature on human mortality rates in Argentina. The study rests on 
semiparametric techniques applied to data with a panel structure to estimate the causal effect of 
temperature extremes on mortality. Monthly mortality rates for municipalities, constructed from the 
universe of deaths between 2010 and 2019 were regressed on monthly temperatures distributions, 
precipitation, and municipality-by-month and month fixed effects. Separate regressions were carried out 
to examine the heterogeneous impacts by age and gender. We also explore alternative specifications as 
well as differences by death causes. Results show that extreme temperatures increase mortality rates 
relative to mean temperatures, and the impact of colder-than-average temperatures in slightly greater in 
magnitude than that of hotter ones. There exists substantial heterogeneity between age groups, with 
older people facing greater risks while results for gender and proxied income level is inconclusive. All days 
of extreme cold cause associated death damages equivalent to 0.6% of GDP, while heat damages 
correspond to 0.1% of 2019 GDP. On the other side, when climate change impacts are valued, damages 
total 0.7% of GDP in scenario 8.5 since savings due to less mortality occurring in cold day compensate only 
partially the increase in the number of hot days. If temperature changes are mild (RCP 4.5), mortality 
would decrease at the national level, but some regions would still be affected. 
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I. Introduction 

Climate change represents a major threat to human beings and other forms of life on our planet. 

The potential impact of climate change on the social and environmental determinants of health 

outcomes is at the heart of both scientific and policy making efforts. The World Health 

Organization (WHO) reports that climate change is expected to cause approximately a quarter 

million additional deaths per year worldwide between 2030 and 2050 due to climate-sensitive 

diseases, malnutrition, diarrhoea, malaria and heat stress (WHO 2022).  

Presently, the global mean temperature is approximately 1.1 degree Celsius above the 

pre-industrial (1850-1900) era (WMO 2021). There is strong agreement among scientists in the 

research community regarding the human influence on the observed and predicted changes in 

temperature and precipitation patterns. Compared to 1850–1900, global surface temperature 

averaged over 2081–2100 is very likely to be higher by 2.1°C to 3.5°C in the intermediate GHG 

emissions scenario (SSP2-4.5) and by 3.3°C to 5.7°C under the very high GHG emissions scenario 

(SSP5-8.5) (Zhongming et al., 2021). Understanding the effects that extreme temperatures could 
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have on human health is key to promote both effective adaptation policies to rising 

temperatures from climatic change, and mitigation policies around the planet.  

The potential impacts of weather changes on mortality are usually divided in two 

categories: direct effects (i.e., those produced by temperature increases) and indirect effects 

arising mainly from changes in vector-borne diseases and food security or increases in weather-

related natural disasters. There are in fact other indirect impacts: it is known that weather tends 

to affect economic growth, energy consumption, agricultural production, labor productivity and 

pollution levels and all those impacts would likely produce a feedback effect towards worse 

health (Deschênes & Greenstone, 2011).  

Across the literature, some articles limit themselves to study the present sensitivity of 

mortality at different temperature levels (e.g. (Otrachshenko et al., 2017), for Russia) and others 

study also temperature mortality aspects due to climate change (e.g., (Deschênes & Greenstone, 

2011) or (Barreca, 2012) for the US; (Burgess et al., 2017) for India; or (Yu et al., 2019) for China). 

The few articles that study climate change impacts on mortality use some of IPCC greenhouse 

gases emissions’ scenarios projections (Representative Concentration Pathways: RCP2.6, 

RCP4.5, RCP6.0 or RCP8.55) or alternative scenarios. For example, (Yu et al., 2019) consider two 

extreme pathways, RCP2.6 and RCP8.5, whereas (Burgess et al., 2017) take the Hadley CM3 A1F1 

scenario that authors affirm corresponds to a business-as-usual trajectory, and  (Deschenes, 

2018) follow the CCSME3 A2 scenario.   

The causal effect of temperature on mortality rates is usually non-linear. A U-

relationship between thermal ambient levels and mortality has been extensively documented 

in the literature. There are several alternatives to account for nonlinearity: log linear functions 

(e.g., (Curriero et al., 2002)); polynomial functions (Basu & Samet, 2002); splines, which are 

piecewise polynomial functions (e.g., (Kaiser et al., 2007); (Doyon et al., 2008); (Barreca, 2012); 

(Barreca & Shimshack, 2012)); or, bins ((Deschênes & Greenstone, 2011); (Otrachshenko et al., 

2017); (Deschenes, 2018); (Yu et al., 2019), among others). Bins arise from discretizing the 

temperature in parts. If daily temperatures in a month within a year are used, then the marginal 

effect for a given bin is the additional effect of “one more day” for which the temperature falls 

into that bin. The main advantage of bins over the other ways of capturing non-linearity is that 

they offer a very flexible functional form that allow each temperature bin to have a different 

impact on mortality. Since most of the recent papers in economics use bins, we follow that same 

approach to ease the comparison.6  

As highlighted by several authors as (Deschenes, 2014) or (Son et al., 2019), even when 

we restrict our review to those articles that use bins, it is not easy to compare the results 

because of several reasons. There are many differences among studies related to: the units of 

measurement of mortality rates and weather conditions as well as on valuation methodologies.  

 

5 For a more detailed description of scenarios characteristics, see (Meinshausen et al., 2011).  
6 (Deschenes, 2014) (p. 609) states that “The temperature-bins approach is used in most economic papers 

in the literature, whereas in public health the spline approach is more common.” Another difference is 

that public health literature often uses time-series econometrics instead of individual level regression or 

panel data. Instead of a time series approach, we use repeated cross-sectional data (i.e., a panel) because 

we believe this approach might help overcome the problem of relatively short time series usually 

observed in Argentinian data. 
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First, in general with respect to deaths, since heat or cold related illnesses are not coded 

separately under the International Classification of Diseases, studies typically relate all-causes 

mortality to ambient measures of weather. In addition, some articles use monthly mortality ((A. 

I. Barreca, 2012), for example), while others use yearly mortality rates ((Deschênes & 

Greenstone, 2011); (Otrachshenko et al., 2017); (Yu et al., 2019), among others), and only a few 

use daily mortality (Cohen & Dechezleprêtre, 2019). 

Second, in what concerns meteorological conditions, temperature and precipitations 

are the most usual control variables included in the empirical studies. For temperatures, there 

is no homogeneous definition of what “cold day” or “hot day” is and so each of the studies 

divides temperature bins differently.7 Since the mortality risk is expected to change with the 

level of temperature, comparisons loose precision. Another aspect is that most articles use 

mean temperature (e.g., (A. I. Barreca, 2012); (Deschênes & Greenstone, 2011), among others), 

and only in few cases, minimum or maximum temperatures are also considered for the 

regressions (e.g., (Yu et al., 2019) or (Cohen & Dechezleprêtre, 2019)).  

Another variable that is sometimes included in mortality-weather regressions is 

humidity ((A. I. Barreca, 2012)). According to the review performed by (Deschenes, 2014) (p. 

609), adding precipitation or humidity “do not lead to meaningful changes in model estimates 

compared to models that only control for temperatures”. Other authors combine temperature 

and humidity in a “heat index” to capture “apparent temperature” (Yu et al., 2019), and also 

find that the change in mortality estimates are “almost negligible”.8  

Third, once mortality impacts are calculated, a few articles estimate the annual total of 

years of life lost ((Deschenes & Moretti, 2009); (Burgess et al., 2017); (Cohen & Dechezleprêtre, 

2019)). To do that implies leaving aside monetary valuation9, and differentiate life years lost 

depending on each age group life expectancy, but it is not exempted from problems. As 

(Deschênes & Greenstone, 2011) (p.183) explicitly state, people dying from extreme weather 

may not be the median citizen and so his/her life expectancy will like likely be lower than that 

of the average citizen. Another thing that may happen is that life expectancies may vary along 

time and that shift is not considered in this type of calculation. 

Moving beyond life-years impacts requires an economic assessment. There are articles 

that use the present value of foregone earnings of a death among working population, which 

requires to know deaths by age group, income by age as well as labour force participation 

(Otrachshenko et al., 2017). This perspective is what is known as the human capital approach, 

and as such constitutes a lower bound, since productivity lost is only a component of the value 

of a statistical life, there are also utility losses when a life ends. Hence, present value of lost 

 

7 Moreover, some studies use statistical indicators to define a reference temperature to which all the days 

should be compared, whereas other opt for a definition based on “comfortable temperature”. As 

discussed in (Otrachshenko et al., 2017) (p. 291), “A typical range of the comfortable temperature limits 

for a human body is from 68 °F to 74 °F (20–23.3 °C) during the winter and from 73 °F to 78 °F (22.3–25.6 

°C) during the summer”.  
8 A more recent study ((Yuan et al., 2020)) find that humidity has a role to play in determining heat stress, 

however, even if that was the case of Argentina, we do not have information to include that possibility in 

our study. 
9 (Burgess et al., 2017) mentions product and wages losses, but do not combine economic analysis with 

life years lost.  
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income neglects the value of leisure time and important subjective aspects and focuses only on 

pecuniary impacts of death. The full willingness derives from what is known as the Value of a 

Statistical Life (VSL) estimates.10,11 In this case, an option could be to assign the same value of a 

statistical life -VSL- for all age groups, another would be to calculate the value of a statistical life 

per year (VSLY), which allow a differentiation of the value of life for people in different age 

groups since expected remaining years up to life expectancy varies by age group. (Deschênes & 

Greenstone, 2011) lead these types of estimations since it uses two alternatives: one is to assign 

a fixed value of a statistical life-year of $100,000 for the different years lost due to deaths in 

each age group and the other allows for the value of statistical life-year to be adjusted over time 

by a real per capita income growth of 2% per year and an elasticity of the value of the statistical 

life-year to income of 1.6. In any of those cases, the value can come from local data or from a 

transfer valuation adjusted by relative income and by the elasticity of VSL to income or both.   

Although the existing studies use a variety of periods, models, mortality indicators, 

meteorological variables, the number and size of the weather bins, the reference bins, and ways 

to value, the great majority of publications find that temperature extremes lead to significant 

changes in mortality. This assessment can be made more precise if we illustrate that with a few 

of those articles that use temperature bins with panel data and so are clearly related to our 

work.  

(Deschênes & Greenstone, 2011) is representative of numerous studies for the US on 

mortality-temperature links. The authors find, for the 1968 to 2002 period, that an additional 

day with a mean temperature exceeding 90 °F leads to an increase in annual age-adjusted 

mortality rate of 0.11% per cent with respect to the one within the 50-60 °F interval. Similarly, 

a day with temperatures below 20 °F is associated with an increase in annual mortality between 

0.07 and 0.08 per cent. When they take account for climate change, they estimate that mortality 

will increase 3 per cent by the end of the century.  

(Otrachshenko et al., 2017) analyze the case of Russia in the 1989-2014 period and find 

that one extra day with temperatures above 25 °C with respect to the 20-25 °C range increase 

yearly mortality by 0.06%, whereas an additional day with low temperature (below -30 °C) only 

has no significant impacts.12 Using the present value of foregone income of working population, 

 

10 (Schelling, 1968) introduced the idea that valuing risk to life requires capturing individuals’ willingness 

to pay for life-risk reductions (usually referred as the value of a statistical life or VSL). The concept of 

subjective value of the risk to life is defined as the marginal rate of substitution between risk and 

consumption: how much consumption the individual is willing to give up reducing his or her risk of dying.  
11 Two categories of methods are typically employed to capture VSL: indirect methods (based on revealed 

preferences) and direct methods (based on stated preferences). The former generally deal with hedonic 

estimations, relating wages to labor risks (see (Viscusi & Aldy, 2003) for a review). The VSL was more often 

assessed using hedonic pricing for the labor market ((Viscusi, 1978); (Blomquist, 2004)). The latter method 

exposes the individuals to hypothetical scenarios of varying risk and cost in which they have to make 

choices. The idea of capturing the value of life based on directly approaching individuals appeared 

previously in the work of (Mishan, 1971). The most usual techniques are contingent valuation (CV) and 

choice experiments (CE). As is the case for hedonic pricing, CV has been extensively applied to health 

impacts valuation (Cropper et al., 2011). 
12 The authors believe that the result for cold days has to do with a decrease in accidents and diseases’ 

interpersonal transmissions because people, under that type of weather, avoid going outdoors.  
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the authors estimate that an extra day of heat implies damages equivalent to 0.28% of daily 

Russian GDP.   

(Burgess et al., 2017) study the case of India for the 1957-2000 period and compare it 

to same results for the US. They find that 1 additional day over 95 °F with respect to the 70-74 

°F bin in India increases annual mortality by 0.74% when that increase for the US is of 0.03% for 

the same years.  

(Yu et al., 2019) find for China between 2014-2012, that an extra day of heat (over 90 

°F) over the 50-60 °F level increases annual mortality rate by 0.6%, whereas an extra day of cold 

(less than 10 °F) increases that mortality rate by 0.3%. The authors also show that climate 

change raises yearly mortality rates in 2.4% and 14.2% in scenarios RCP2.6 and 8.5 respectively. 

Using the VSL for China, estimated climate change damages account for 0.21% and 1.19% 

depending on two climate scenario projection.  

(Carleton et al., 2020) analyze based on information for 40 countries in the world, that 

an extra day of heat (above 35°C) increase annual world mortality by 0.05% (4 deaths per million 

people) whereas an extra cold day (below -5°C) increases that rate by 0.04% (3 deaths per 

million). The authors also show that if climate change occurs as projected by RCP4.5, mortality 

could increase by 14 deaths every 100,000 people and 84 deaths/100,000 under RCP8.5. Using 

the value of a statistical life, those impacts on mortality are equivalent to 0.6 and 3.2 percent 

respectively of the world GDP. The same authors find that the relationship between 

temperature and mortality is flattened for high income countries, which can explain part of the 

differences among studies. 

In addition to the overall mortality result, the literature also discusses factors affecting 

vulnerability to temperature levels ((Hajat & Kosatky, 2010); (Deschenes, 2014); (Benmarhnia et 

al., 2015); (Son et al., 2019)). One of the clearer ones is age. Elderly are known to face higher 

risks from cold and heat, which may be due to physiological conditions, housing or health access 

conditions as well as behavioural characteristics.13 Findings suggest higher mortality impact from 

temperature levels in less qualified employees, among black population and unmarried persons 

(Son et al., 2019). Other individual-level modifiers as gender or education do not yield conclusive 

results, whereas lower income individuals tend to be more affected by temperature extremes14.  

The literature analyses other determinants that have to do with community 

characteristics rather than individual ones. In that sense, there is weak evidence for higher heat 

related mortality associated with higher population density, poor housing facilities, and higher 

pollution levels. Additional factors, but also with unsubstantial evidence, are higher risks for 

heat: in urban areas; in communities with warmer climate; places with less proportion of green 

areas; etc. Some few studies also report higher vulnerability to cold weather: in regions with 

 

13 Despite of that apparent clarity in the results, middle age groups are more affected than the elderly in 

some cases (this seems to happen for Russia according to (Otrachshenko et al., 2017) (p. 295). 
14 In addition to gender and education, (Cohen & Dechezleprêtre, 2019) also assess how the effect of 

temperature on mortality changes with income. They find for Mexico that 11% of annual deaths are 

associated to climate and that temperatures are more likely to kill people in the bottom half of the income 

distribution. (Barreca et al., 2015) also studies the differences of mortality-temperature impacts across 

income deciles in the US. They find that cold and hot days impact the most in lowest deciles and the 

mortality influence of temperature is almost null in the top income deciles. (Carleton et al., 2020) also 

show the impact differences driven by countries’ income.  
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warmer climate, in places located in lower latitudes and in rural areas (Burgess et al., 2017). In 

an attempt to take into account those community factors, it is usual to find studies within this 

literature that test for regional subsamples ((A. I. Barreca, 2012)and (Deschênes & Greenstone, 

2011) for different regions in the US; (Yu et al., 2019) for different regions in China; (Carleton et 

al., 2020) and (Deschenes, 2018) for different countries). From the available literature reviews, 

it is possible to conclude that, except for the age factor, the rest of the determinants of 

temperature-mortality sensitivity are location and population sensitive, from where the 

importance of performing local studies.  

This study makes several contributions. Firstly, it adds to the limited existing literature 

on climatic determinants of mortality in developing countries and in Argentina. A literature 

review on temperature-related mortality between 1980 and 2017, (Son et al., 2019) shows that 

most of the studies focus on North America, Europe and Asia, and “many nations, including most 

in Latin America and Asia, had no studies”. Argentina is an interesting case in its own right 

because it has a vast territory with diverse weather. The wide range of altitudes, that go from 

high mountains along the Andes plains on the Atlantic coast, contribute to that diversity.15 The 

weather is mild in the Pampas, cold in the western Patagonia, subtropical in the Mesopotamia 

region, and warm in the Northeast. Along the Andes (located in the West), are the coldest areas, 

with dry and snowy weather.  

Second, it provides estimates of the incidence of climate change on mortality (and not 

only for the historical link between temperature and death rates). We do so for the whole 

country (i.e., a sizable portion of the population), breaking the analysis by age and gender groups 

and using state-of-the-art fixed effects panel data econometrics.  

Third, we value mortality damages. In a context of climatic change, where resources 

must be allocated to promote adaptation to the new climate, comparable countrywide 

estimates of health impacts and the corresponding damages are indeed needed to develop a 

rational and sustainable adaptation policy. A few studies have documented the influence of 

weather on human mortality in Argentina. Of those, the ones that are closers to our work are 

(Almeira et al., 2016), which reports a U-shaped relationship between temperature and 

mortality for the cities of Buenos Aires and Rosario, and (de Garín & Bejarán, 2003), that 

examines the effect of thermal stress during summertime (characterized by the relative strain 

index) on mortality rates in Buenos Aires city. 16,17 Although informative, none of the existing 

 

15 Under the Köppen climate classification, Argentina has 11 different climate types (Rubio, 2018): Humid 

Subtropical (Cfa, Cwa), moderate oceanic (Cfb), warm semi-arid (BSh), subtropical highland oceanic (Cwb), 

warm desert (BWh), cold semi–arid (BSk), cold desert (BWk), moderate Mediterranean (Csb), cold oceanic 

(Cfc), and tundra (ET). 
16 Other studies, are (Chesini, Abrutzky, Herrera, et al., 2019) for the mortality associated to extreme cold 

in Argentina, (Chesini et al., 2018) and (Chesini, Abrutzky, & Titto, 2019) for heat, but they use very 

different methods, based on time series instead of on panel data. 
17 Other studies for Argentina focus on the impact of meteorological variables on morbility. Using data 

from emergency room visits at a hospital in central Buenos Aires, (Rusticucci et al., 2002) reports the 

association between weather conditions and several pathologies for both winter and summer times 

during the 1996-97 season. Yet other studies have turned their focus to specific pathologies. (Alexander, 

2013) studies the association between meteorological variables and diverse diseases in the calls to the 
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work relating weather conditions and health in Argentina perform any economic valuation and 

this is an important contribution.  

The rest of the paper is organized as follows. Section II describes the empirical strategy 

implemented to value mortality impacts due to temperature variations. Section III describes the 

data. Section IV shows the estimation results in terms of mortality rate changes, consequent 

deaths and valuation of those impacts, as well as the robustness checks we perform. The last 

section V summarizes our findings, the policy consequences they have and discusses the 

limitations of our results.  

II. Empirical strategy 

The empirical strategy involves four different steps for the case of Argentina. First, estimate a 

model that relates daily temperature in a recent period with the corresponding mortality rates. 

Second, calculate the change in temperature according to climate change projections. Third, 

estimate deaths attributable to extreme temperatures in the benchmark period as well as the 

ones resulting from climate change. Fourth, value deaths using the value of a statistical life.  

II.1. Benchmark model 

Our benchmark model is described by the following equation: 

 

𝑀𝑅𝑑𝑚𝑡𝑎 = 𝛽0 + ∑ 𝜃𝑎𝑗 ∙ 𝑇𝐸𝑀𝑑𝑚𝑡𝑗 + ∑ 𝜆𝑎𝑧 ∙ 𝑃𝑅𝐸𝑑𝑚𝑡𝑧 + 𝜇𝑚 +𝜔𝑑𝑚 + 𝜀𝑑𝑚𝑡𝑎   
4
𝑧=1

6
𝑗=1 [1] 

 

where 𝑀𝑅𝑑𝑚𝑡𝑎 is the mortality rate per 100,000 inhabitants in municipality or district d (which 

belong to a given state or province) in month m in year t for a give age-group a. 𝑇𝐸𝑀𝑑𝑚𝑡𝑗 is the 

number of days in each district d per month m per year t that fall in each temperature bin j, and 

𝑃𝑅𝐸𝑑𝑚𝑡𝑧 is the number of days in each district d per month m per year t that fall in each 

precipitation bin j. As in several articles in this literature ((Deschênes & Greenstone, 2011); 

(Deschenes, 2018)), the temperature range was divided in 10 degrees Fahrenheit (°F) bins18. The 

temperature bin taken as the reference is the one of 70-80 °F (≈21.1-26.6 °C), that corresponds 

to the mode of the frequency distribution of days in a month that fall into each of the bins. Then, 

𝜇𝑚 stands for month time effects that allow controlling for potentially confounding effects 

common to all municipalities that vary overtime, for example macroeconomic shocks affecting 

the countrywide economic performance, which might affect health outcomes. Finally,  𝜔𝑑𝑚 is 

an interaction term, which captures temporal variations between municipalities due to 

differences in air quality, income levels, educational attainment, and population density. Thus, 

these fixed effects could be interpreted as a baseline estimate of mortality rates in each 

 

public ambulance emergency service of the city of Buenos Aires during the years 1999-2004. (Piccolo et 

al., 1988) documented the relationship between asthma-related hospitalizations and meteorological 

variables in the city of Bahia Blanca. More recently, two studies for the city of Córdoba found that a higher 

daily mean temperature and a wider daily temperature range are important determinants of infectious 

diseases in both the upper and lower respiratory tracts, particularly among the elderly population and in 

low-income households enduring housing deprivation ((Amarillo & Carreras, 2012); (Carreras et al., 

2015)).  
18 The precipitation range was partitioned in five bins of 4 millimetres (mm) of rain. 
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municipality ((Barreca & Shimshack, 2012)). Finally, 𝜀𝑑𝑚𝑡𝑎 is an error term. Note that we use the 

monthly mortality to avoid the so-called “harvesting effect”: i.e., we try to elude the temporal 

displacement of deaths that occur that after a period of more deaths than expected because of 

the heat, follows a period of mortality deficit because it is likely that heat wave especially 

affected those whose health weak and so would have died in the short-term anyway. If less than 

a month was considered, we would likely overestimate the impact of temperature on mortality. 

Our main estimate for the calculation of damages is in 𝜃𝑎𝑗, which can be read as the 

change in MR with respect to the MR in the temperature bin of reference, when the number of 

days in each of the other temperature bins varies by 1: 

 

𝛥𝑀𝑅𝑑𝑚𝑡𝑎𝑗 = 𝜃𝑎𝑗̂ ∙ 𝛥𝑇𝐸𝑀𝑑𝑚𝑡𝑗  , with  𝛥𝑇𝐸𝑀𝑑𝑚𝑡𝑗 = 1   [2] 

Hence, 𝛥𝑀𝑅𝑑𝑚𝑡𝑎𝑗 = 𝜃𝑎𝑗̂ 

 

Since the final unit of analysis is municipality (d) by month (m) in a given year (t), there 

will be a 𝜃 for each age-group (a) for each temperature bin (j): 𝜃𝑎𝑗̂. More specifically, we ran a 

model for all age groups and both genders, then, we estimate four regressions, one for each age 

group. In addition, we run alternative specifications. Finally, we perform some robustness check 

with the model including temperature and precipitation interactions; using the logarithm of the 

mortality rate; and using monthly lagged bins. 

II.2. Climate change estimation 

With the different values for 𝜃𝑎𝑗̂ obtained from equation [1], we estimate how climate change 

modifies in each district d the number of days in a given month m of a certain year t that fall 

within each bin j (𝛥𝑇𝐸𝑀𝑑𝑚𝑡𝑗), using climate scenarios for temperature change predictions for 

the future as compared to the present period. With those two inputs in hand, the change in the 

mortality rates due to the modification in the number of days that fit within each bin results 

from: 

  

𝛥𝑀𝑅𝑑𝑚𝑡𝑎𝑗 = 𝜃𝑎𝑗̂ ∙ 𝛥𝑇𝐸𝑀𝑑𝑚𝑡𝑗        [3] 

 

More specifically, what is calculated to fulfil the objective of this work is the change in 

the mortality rates due to the shift in the number of extreme cold (c), heat (h) days, and both 

extreme types of weather (e), as: 

𝛥𝑀𝑅𝑑𝑚𝑡𝑎𝑐 = 𝜃𝑎𝑐̂ ∙ 𝛥𝑇𝐸𝑀𝑑𝑚𝑡𝑐   

𝛥𝑀𝑅𝑑𝑚𝑡𝑎ℎ = 𝜃𝑎ℎ̂ ∙ 𝛥𝑇𝐸𝑀𝑑𝑚𝑡ℎ  

𝛥𝑀𝑅𝑑𝑚𝑡𝑎𝑒 = 𝜃𝑎𝑐̂ ∙ 𝛥𝑇𝐸𝑀𝑑𝑚𝑡𝑐 + 𝜃𝑎ℎ̂ ∙ 𝛥𝑇𝐸𝑀𝑑𝑚𝑡ℎ     [3’] 

 

Note that c (for “cold”) corresponds to j = bin <40 °F (≈<4.4 °C), whereas h (for “hot”) is j = bin 

> 90 °F (≈> 32.2 °C).  

II.3. Number of deaths due to extreme temperature and its change 

Based on the changes in mortality rate from [2] and [3], we calculate the number of deaths that 

result from each of three circumstances (changes in cold days, heat days, and both extreme 

temperature days). 
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First, we calculate the number of deaths for the whole country resulting from an extra 

day within each of the bins with respect to the deaths occurring at the reference temperature 

bin based on equation [2],  

 

𝛥𝐷𝑒𝑎𝑡ℎ𝑠𝑎𝑗 = 𝜃𝑎𝑗̂⏟ ∙

𝛥𝑀𝑅𝑑𝑚𝑡𝑎𝑗

12 ∙
𝑃𝑜𝑝𝑎

2010

100 000
∙ 𝑛𝑑           [4] 

 

Where 𝛥𝐷𝑒𝑎𝑡ℎ𝑠𝑎𝑗 is the change in the number of deaths in age-group a for each additional day 

of temperature within each bin j, 𝜃𝑎𝑗 are the estimated coefficients for average monthly 

mortality rate from equation [1], 12 are the number of months in a year (this converts monthly 

mortality to annual mortality), 𝑃𝑜𝑝𝑎
2010 is the population of group a in 2010 (it is divided by 100 

000 because 𝜃𝑎𝑗̂ is the 𝛥𝑀𝑅𝑑𝑚𝑡𝑎𝑗 in 100 000), and 𝑛𝑑 is the number of districts in Argentina 

(because 𝜃𝑎𝑗̂ is an average per district that has to be converted to a national estimate, 𝑛𝑑 =

51119. 

 Second, to get the change in the number of deaths attributable to each bin temperature 

per year, we multiply [4] by the average number days in each bin per month during the period 

used for the estimation of the benchmark model (and then by 12, the number of months in a 

year): 

 

𝛥𝐷𝑒𝑎𝑡ℎ𝑠𝑎𝑗 = 𝜃𝑎𝑗̂⏟
𝛥𝑀𝑅𝑑𝑚𝑡𝑎𝑗

∙ 𝑇𝐸𝑀𝑑𝑚𝑡𝑗 ∙ 12 ∙
𝑃𝑜𝑝𝑎

2010

100 000
∙ 𝑛𝑑          [5] 

 

Third, we estimate the number of deaths attributable to the change in the number of 

days within each bin following equation [3] as: 

 

𝛥𝐷𝑒𝑎𝑡ℎ𝑠𝑎𝑗 = 𝜃𝑎𝑗̂ ∙ 𝛥𝑇𝐸𝑀𝑑𝑚𝑡𝑗⏟          
𝛥𝑀𝑅𝑑𝑚𝑡𝑎𝑗

∙ 12 ∙
𝑃𝑜𝑝𝑎

2010

100 000
∙ 𝑛𝑑         [6]  

 

As it is clear from equations [4]- [6], overall, the total effect of climate change on deaths 

varies by the population within each age-group in the whole country and depends on the 

sensitivity of mortality to colder and hotter periods, on the number of cold and hot days in a 

year, and on how these changes when the distribution of temperature shift as the result of 

climate change. The economic valuation of such effects is the only step that remains. 

 

II.4. Mortality damages attributable to temperature extremes and their change 

Finally, the 𝛥𝐷𝑒𝑎𝑡ℎ𝑠𝑎𝑗 calculated in equations [4]- [6] are valued here using the value of a 

statistical life.  

Even when there are non-market methods to assess the VSL as we mentioned above, 

they involve detailed data and sophisticated techniques, which require resources and 

 

19 This is an underestimation that may be adjusted in the next version. As of 2020, there is the capital, 135 

partidos y the Province of Buenos Aires, 380 departamentos in the rest of the country. The city Buenos 

Aires is not included in the results reported here. It will be added in the new version of this document.  
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knowledge. This may explain why there are relatively few estimates of VSL for low and middle- 

income countries, as this is widely acknowledged in the literature (see (Robinson, 2017), among 

others). However, there is an estimation of the VSL in Argentina (Picasso & Grand, 2019). The 

estimation is not in the context of health but of crime. However, we use it as an alternative 

because it is obtained with local data. To cover the uncertainty surrounding that applicability of 

that VSL for this case, we opt for an alternative: transfer values from studies in other countries. 

Based on them, we adjust VSL from other places (policy site: denoted by p) to Argentina, which 

is location of the study (s) relative per capita income (𝐼𝑝 𝐼𝑠⁄ ) and the VSL income elasticity (𝜂), as 

it is usual in the literature (Brouwer, 2000) following: 

 

 𝑉𝑆𝐿𝑝 = (𝐼𝑝 𝐼𝑠⁄ )𝜂 ∙ 𝑉𝑆𝐿𝑠                  [7] 

 

Then, damages are obtained in each case as the product of 𝛥𝐷𝑒𝑎𝑡ℎ𝑠𝑎𝑗 and  𝑉𝑆𝐿𝑝.  

III. Data 

The first part of our estimation strategy outlined above relies on data for the 2010-2019 period: 

death counts by administrative subdivision and weather records from meteorological stations 

Argentinean data. Then, for the second part of our empirical methodology, climate change is 

captured through the difference between 2010 (the year within the interval that corresponds to 

the last census done in Argentina) and 2085 distributions of temperature for Argentina as 

described in the NASA Earth Exchange Global Daily Downscaled Projections (NEX-GDDP). 

 

III.1. Mortality rate  

The mortality data correspond to the universe of over 4 million deaths across the country in the 

period, as compiled by the Dirección de Estadísticas e Información Pública, the agency in charge 

of the National System of Health Statistics. The dataset reports each death along with the date 

of death, the gender and age, and the municipality of residence of the deceased. Thus, death 

counts were aggregated at the municipal level, the smallest administrative subdivision in the 

dataset. 

Death counts were supplemented with annual population estimates to construct 

monthly municipal mortality rates per 100,000 inhabitants, by gender and age-groups. 

Specifically, following (Deschênes & Greenstone, 2011) and (A. Barreca et al., 2015), the 

population was stratified into four age groups (0-4, 5-44, 45-64, >64-year-olds)20. Annual 

population numbers by municipality had to be interpolated from the 2010 national population 

census.  

Average mortality rates are (per 100,000) approximately 21 inhabitants for children 

under 5 years of age, 8 for people between 5 and 44 years of age, 58 for adults between 44 and 

65, and 413 for older adults. One should expect to observe the greatest impacts of extreme 

temperatures in the last group, given that it generally includes the most vulnerable people.  

 

20 Unfortunately, available information did not allow for the construction of separate mortality rates for 

infants, i.e., younger than one year old, who are known to be far more susceptible to thermal stress than 

other young children (Keim et al., 2002). 
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III.2. Meteorological records  

Weather records were obtained from the Servicio Meteorológico Nacional, the official national 

weather and climatological agency. Daily maximum and minimum temperatures in degree 

Celsius (°C) as well as total precipitation in millimetres (mm) are reported for the 71 weather 

stations that comprise the National Weather Station Network. The monitoring network might 

seem to be sparse given the surface area and the degree of development of a country such as 

Argentina. However, according to the 2010 national census, the Argentinian population is mostly 

urban, with 91% living in towns bigger than 2,000 inhabitants, and half of the total population 

living in just 8 cities. Therefore, the 61 weather stations finally included in the analysis provide 

coverage to approximately 82% of the country’s population.21  

Daily station data had to be spatially interpolated at the municipal level to construct 

monthly weather exposure variables. Following a common approach in the literature, square 

inverse distance weights were calculated from each municipal geographical centroid to each 

station within a 100 kilometers radius (Hanigan et al., 2006). Thus, the interpolated weather 

variables are simply the weighted average of the stations’ records within that radius (i.e., the 

closest monitoring station to a particular district is given more weight). Limiting the cut-off 

distance to 100 km was necessary to balance the number of municipalities included in the study 

while minimizing the potential measurement error that would otherwise be introduced by 

including distant stations. Despite districts were not included because of those reasons, they 

cover 84.9 per cent of Argentina’s population. In general, monitoring stations are not located 

where population is scarce. Similar cut-off levels have been used in empirical estimates for the 

United States ((Deschênes & Greenstone, 2011); (A. I. Barreca, 2012); (A. I. Barreca & Shimshack, 

2012); (Ranson, 2014); (A. Barreca et al., 2015)). Figure 1 show the municipalities included in the 

study along with the location of the 71 weather stations.   

 

Figure 1. Municipalities included in the study  

 

 

21 This is consider enough given that the paper for China refers to 6% of the population and that for Russia 

covers 92% of the inhabitants. 
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Source: Own elaboration.  

Notes: The departments in white do not have a meteorological station close at less than 100 km from its center. 

However, those are places with few inhabitants, and that may be in fact the reason why they do not have a 

meteorological station close by.  

 

 III.3. Climate change 

Climate change temperature data comes from the NASA Earth Exchange Global Daily 

Downscaled Projections (NEX-GDDP). That database has daily minimum and maximum 

temperature as well as precipitation for the whole planet. The temporal coverage is from 1950 

to 2014 historical data and 2015 to 2100 projected Shared Socioeconomic Pathways: RCP-4.5 

and RCP-8.5. The RCP 4.5 is a moderate scenario where some effort to curb climate change is 

made but temperatures rise 2.7°C globally by the end of the century, whereas RCP-8.5 projects 

that the global economy grows fuelled by exploiting fossil fuels and energy-intensive lifestyles 

and by 2100 the average global temperature is 4.4°C higher. Note that the temperature by 2050 

under the 8.5 scenarios would be similar to that of the 4.5 projection to the end of the century.  

The spatial resolution of NEX-GDDP is approximately 25 degrees x 25 degrees. We took 

the daily information for temperature available within the geographical limits of Argentina and 

average it for both 2010 and 2085.22  

Then, as previously, the temperatures are assigned to each municipality. Figure 2 shows 

the shift in days within each temperature bin if the projected climate change takes place. What 

happens in that case is that, as expected, the average temperature increases and the number of 

cold days decreases while the number of hot days increases.23 Scenario 8.5, since it projects 

more climate change, shows a higher number of hot days than the 4.5 one.  

 

 

 

 

 

 

 

 

 

 

 

 

22 The geographical references for Argentina are as follows. North: Latitude 21° 46’ 52’’ S, Longitude 66° 

13’ 17” O; South: Latitude 55° 03’ 21” S, Longitude 66° 31’ 25” O; East: Latitude 26° 15’ 59” S, Longitude 

53° 38’ 15” O; West: Latitude 50° 01’ S, Longitude 73° 34’ O. 
23 Note that because NASA data are historical only up to 2014, there is a gap between the base 2010-2019 

meteorological information used to estimate the temperature-mortality rate sensitivity and the 

temperature data from NEX-GDDP. This is a usual matter in this type of estimations (Yu et al., 2019). Figure 

A.1 in Annex shows the gap between our local data and the NEX-GDDP model. For example, NASA data 

does not show days within the > 90  °F while local data does. Other studies correct that gap (Burgess et 

al., 2017), which we leave for future work. 
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Figure 2. Change in the distribution of days within a year that fit into each temperature bin 

in 2010 and 2085 as projected by NASA 

 

A. Scenario 8.5 B. Scenario 4.5 

  
Source: Own elaboration. 

Note: Average temperature increase 2.2 F in RCP 4.5 and 6.8 F in RCP 8.5. RCP 4.5 at 2085 is approximately RCP 8.5 

at 2050. Prediction in 2010 is NASA information, which differs from the national information used to estimate the 

coefficients of our model. Figure A.1 in the Annex shows that discrepancy. 

 

III.4. Valuation 

 

Finally, for the Value of a Statistical Life, we use an estimation for Argentina from (Picasso & 

Grand, 2019) that to our knowledge is the only one derived from local data. In addition, for 

robustness check, we transfer the VSL from estimates in the US (Viscusi & Masterman, 2017) 

and from a global study by the World Bank in association with the Institute of Health Metric and 

Evaluation (World Bank & Institute for Health Metrics and Evaluation, 2016).  

The local VSL is $1,5 million corresponding to 2014 (Table 1). The original US estimate is 

$9.6 million 2014 dollars, which transferred using the Argentina to US relative GDP per capita 

yields a value of $2.4 million.24 Similarly, the World Bank estimate for OECD countries is $3.8 

million, which transferred to Argentina becomes $1.98 million.  

We update the estimates to 2019 dollars, which is the last year of our mortality data, 

and transfer them to Argentina’s case adjusting by the relative GDP ratio among countries. 

Because of the uncertainty surrounding what is the best VSL, we perform a Montecarlo 

simulation. To do so, we assume a triangular distribution for VSL, with a minimum value, a 

maximum value and a mode of 1.2, 1.72 and 1.59 respectively.25  

 

 

 

 

 

24 For simplicity, in both transfers, we assume that the elasticity of value of a statistical to income is 1. We 

will also assume uncertainty in last version. 
25 Note that the values for 2019 are lower than the original studies because Argentina’s per capita GDP 

has decreased from 2014 to 2019. 
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Table 1. Value of a statistical life used in our calculations 

 
Source: Own elaboration based on references. 

IV. Results 

This section is divided in two subsections. The first shows the estimates for the mortality rate 

temperature impacts for the whole population, by age-groups in the 2010-2019 period. The 

second subsection uses the estimated relationships to predict the impacts on annual deaths due 

to temperature extremes, its variation due to climate changes, and their valuation. 

 

IV.1. Mortality rates 

The changes in mortality rates attributable to the 2010-2019 temperature profile are 

summarized in Figure 3. That figure presents the estimated exposure impacts computed by 

nonparametric regressions between mortality rates and temperature at the municipal level, 

controlling for precipitation levels and fixed effects by month and municipality-by-month (i.e., 

equation [1]) for all age-groups, genders, and regions. The results must be interpreted as the 

relative impact of daily mean temperature over annual mortality due to an additional day in a 

given month with temperature above or below the observed mode temperature bin during the 

2010-2019 period (i.e., the 70-80 °F or 21.1-26.6 °C bin). Any day with a mean daily temperature 

above the reference temperature positively and significantly affects mortality rates. Days in the 

extreme cold temperatures (<40 °F bin) also shows a significant excess mortality with respect 

to the reference temperature. 

Figure 3 Impact of temperature on average monthly mortality rates by district  

 

Reference

Picasso and Conte Grand 

(2019) Viscusi and Masterman (2017) World Bank and IHME (2016)

Country, Year Argentina, 2014 US, 2014 OECD, 2014

Units current million US$, 2014

Atlas method current million 

US$, 2014

PPP constant 2011 

international $US

Source, previous to any adjustment 1.5 9.6 3.8

Argentina per capita Atlas current million $US GDP 2014 12,460

United States per capita Atlas current $US GDP 2014 55,980

Argentina GNI per capita, PPP constant 2011 international $ 19,101

GDP per capita Reference for the World Bank results 37,000

(World Development Report, World Bank) 12,335

Argentina GDP per capita current $US 2019 10,006

VSL adjusted 1.5 2.14 1.98

VSL en millones de dólares corrientes de 2019 1.20 1.72 1.59
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Source: Own elaboration.  

Note: The broader 95 confidence intervals are likely due to the fact that there are less observations, so less precision, 

in the extremes. 

 

The U shape is usual in the literature ((Deschênes & Greenstone, 2011), for example).26 

But, the U is not always perfectly symmetric. As Figure 3 suggests, for Argentina, the estimated 

impacts of colder-than-average temperatures are slightly higher than the computed estimates 

for hotter than average temperatures. In other countries as Mexico, the higher impacts are also 

associated to cold and slightly below mean temperature days rather than to heat (Cohen & 

Dechezleprêtre, 2019).27 More precisely, a cold day (average temperature below 10 °C) cause 

3.5 fives more excess mortality than a heat day (average temperature above 32 °C).28  

The last row of Panel A in Table 2 shows the same result as Figure 3 in a more detailed 

way. On average, an additional day with a relative cold day, one with a countrywide mean 

temperature between 30 and 40 °F (<-4.4 °C) increases the population-weighted average 

monthly mortality rate in 0.633 each 100,000 inhabitants with respect to the mortality for a day 

with the reference temperature, and that increase is significant. On the other side, an extra 

relatively hot day (> 90 °F or 32.2 °C) significantly increases that mortality rate by 0.515 in 

100,000. If we were to calculate the difference between the curve in Figure 3 and the x axis, 

excess mortality due to a temperature different from the ideal everyday would be such that the 

annual mortality rate goes from 586 to 660 per 100,000 in a year.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

26 There are also few studies for which the U shape does not appear clearly (this is the case of 

(Otrachshenko et al., 2017) for Russia, for example). 
27 The authors explain that result by the fact that in Mexico just below average mean temperature occur 

with cold nights and that induces high pathology risks.  
28 Note that the change in the U shape for extremely cold days may indicate some adaptive behavior: 

people may stay home or wear warmer clothes when weather is the coldest and so mortality differentials 

may be less high than under slightly fewer cold days (see Figure 3). 
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Table 2. Impact of extreme temperatures on monthly mortality rate per 100,000 inhabitants (2010-

2019) 

 
Source: Own calculation 

Notes: * p<0.05, ** p<0.01. *** p<0.001. The estimate 5 in panel A corresponds to averages weighted by the 

population of each age group for the year 2010. The reference BIN is 70-80 ◦F. All specifications include precipitation 

bins, municipality and month fixed effects, and province by year fixed effects. 

 

Given that several factors can affect the sensitivity of mortality to temperature levels, 

regressions were stratified by age-group (Table 2. Panel A), a proxy for income and gender (Table 

2. Panel B) in order to examine potential heterogeneity in the temperature-mortality 

relationship. The elderly is clearly the age-group most affected by temperature since all 

coefficients are significant in all bins and are much larger than those corresponding to the rest 

of the age-groups and the population weighted average, as in the literature.29 That impact for 

elderly is also larger for colder temperatures than for hotter ones. There does not seem to be a 

pattern regarding gender, which is in line with existing literature. Robustness checks do not 

show results very different from those for the whole population. 

 

IV.2. Extreme temperatures Deaths and Economic Damages 

Once obtained the impact on mortality rates of extreme temperatures in a period and climate 

change, deaths can be calculated following equations [4]-[6]. The results of those calculations 

for extreme temperatures are summarized in Table 3. 

 The last two columns of Panel A in Table 3 show the number of deaths per age group 

when an additional day of extreme cold and extreme heat occur. They are the result of replacing 

in equation [4] the coefficients from the first column of Table 1. Overall, the annual countrywide 

number of deaths due to an extra day of cold is 283 and 229 are the deaths due to an extra day 

of heat. Those deaths represent 0.072 and 0.070% respectively of Argentina’s deaths in 2010 

(i.e., 318,477). There are six extreme cold days (less than 4.4. degree Celsius average for the day) 

 

29 A similar result relation between elderly and overall mortality impact of heat is found by (Yu et al., 2019) 

for China and (Carleton et al., 2020) for a sample of 40 countries, for example.  
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and two extreme heat days (over 32.2 degree Celsius as the average for a day) in a year. Hence, 

annual deaths attributable to extreme temperature represent 0.53% and 0.12% of total all cause 

deaths in Argentina (see 1,767 and 412 deaths in the first two columns of Panel A in Table 2). 

The latter derive from equation [5]. Note that we are only accounting for excess deaths in the 

extremes. 

  Deaths related to changes in extreme temperatures because of climate change are 

reported on Panel B in Table 3 for the 8.5 and 4.5 scenarios respectively. In the most aggressive 

scenario in terms of climate change (RCP-8.5), there would be approximately 22 more days of 

heat and 10 less days of extreme cold per year. Because of the change expected in lower 

temperature days, mortality decreases in 2,942 deaths, whereas variations in heat days increase 

mortality by 5,019 cases. Hence, the net effect of temperature changes attributable to climate 

change accounts for 0.63% of Argentina’s yearly average deaths 2010-2019 (i.e., 2,078 per year). 

 

Table 3. Yearly deaths due to extreme cold and heat in Argentina 

Panel A. Period 2010-2019 

 
Panel B. With climate change 

 
 
Source: Own elaboration 

Note: It has to be remembered that the change in temperature as in NASA does not match exactly the estimated 

model.  

 

In the less extreme climate change scenario, there would be around 2 days less of 

extreme cold and 1 day extra (at the maximum) of heat. As a result, mortality would decrease, 

so there would be gains from climate change. However, there are places where mortality will 

increase due to climate change since temperature variations are not uniform across the whole 

country (Figure A.2 in Annex A) and inhabitants’ resilience may also differ. 

Once deaths are accounted for, the economic valuation is straightforward. Table 4 

shows the estimated damages. All days of extreme cold cause damages equivalent to 0.5% of 

GDP, while heat damages correspond to 0.1% of 2019 GDP. On the other side, when climate 

2010-2019 period Total excess deaths per year Deaths extra day within bins

Age range Due to extreme cold         (BIN < 40 ◦F) Due to extreme heat (BIN > 90 ◦F)

Deaths due to both 

extremes BIN 30 to 40 ◦F BIN > 90 ◦F

0 to  4 46 7 53 7 4

5 to  44 13 32 45 2 18

45 to 64 113 45 158 18 25

> 64 1,595 327 1,922 256 182

Total deaths 1,767 412 2,179 283 229

Number of days per year within bins 6 2 8

% of average 2010-2019 deaths 0.53% 0.12% 0.66% 0.09% 0.07%

Change in total deaths per year 

Age range Due to extreme cold         (BIN < 40 ◦F) Due to extreme heat (BIN > 90 ◦F) Due to both extremes

Scenario RCP-8.5

0 to  4 -76 91 16

5 to  44 -22 392 370

45 to 64 -189 550 361

> 64 -2,655 3,986 1,331

Total deaths -2,942 5,019 2,078

Change in the number of days per year within bins -10 22

% of average 2010-2019 deaths -0.89% 1.51% 0.63%

Scenario RCP-4.5

0 to  4 -17 3 -15

5 to  44 -1 2 1

45 to 64 -20 7 -12

> 64 -497 95 -402

Total deaths -535 107 -428

Change in the number of days per year within bins -2 1

% of average 2010-2019 deaths -0.16% 0.03% -0.13%
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change impacts are valued, damages total 0.7% of GDP in scenario 8.5 since saving due to less 

mortality occurring in cold day compensate only partially the increase in the number of hot days 

(a similar finding was made for China by (Yu et al., 2019)). In the scenario 4.5 climate change is 

indeed beneficial. Argentina seems to fit in the middle when compared to those for China (Yu et 

al., 2019): 0.21% for the RCP2.6 “optimistic” scenario and 1.19% for the “pessimistic” RCP8.5 

emissions’ projection path.  

 

Table 4. Damages due to yearly extreme temperature and to expected climate change 

 
 

Source: Own calculation. 

 

 

V. Robustness checks 

 

We perform several robustness checks: first, we separate mortality by cause to confirm that 

cardiovascular and respiratory mortality are the ones that are more closely related to 

temperature variation; second, we estimate the mortality-temperature relationship by region 

to assess if people living in regions with low frequencies of cold (hot) days have higher impacts 

when it is cold (hot) than those which are used to cold (hot) days; third we do try other 

specifications for the model.  

 Since the mortality database registers the main cause of death, we compare the 

mortality-temperature sensitivity for cardiovascular episodes, those associated to respiratory 

illnesses and malignant neoplasms. As can be seen in Figure 4 cardiovascular related mortality 

is more responsive to temperatures higher than the reference, and this is particularly the case 

for high temperatures. Respiratory causes are also sensitive to temperature, but less than 

cardiovascular-related deaths. This is a usual result in the literature ((Otrachshenko et al., 2017); 

Extreme cold Extreme heat

Net effect in 

extremes

Deaths per year

2010-2019 (local data) 1,767 412 2,179

% total deaths 2010-2019 0.5% 0.1% 0.7%

Number of days per year within bins 6 2 8

Change scenario 8.5 (NASA data) -2,942 5,019 2,078

Change in the number of days per year within bins -10 22

Change scenario 4.5 (NASA data) -535 107 -428

Change in the number of days per year within bins -2 1

Total deaths 2010-2019 331,557

Damages (as % of GDP)

2010-2019 (local data) 0.6% 0.1% 0.8%

Change scenario 8.5 (NASA data) -1.0% 1.8% 0.7%

Change scenario 4.5 (NASA data) -0.19% 0.04% -0.15%

Argentina GDP million current USD 2019 449,663
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(Yu et al., 2019)). Finally, and as expected for the robustness of the results, malignant neoplasm 

is almost unrelated to the profile of temperatures.30  

 

Figure 4. Excess mortality per cause of death 

 
Source: Own elaboration. 

 

 As can be seen in Table 2 Panel B alternative specifications do not change substantially 

the results. 

VI. Conclusions 

It is believed that environmental factors are important determinants of human health outcomes. 

Recently, due to global warming and the recurrence of heatwaves, attention has been placed 

on how weather affects health outcomes. Of those outcomes it is mortality that has captured 

the most attention in part because there are some results that show that most of damages of 

climate change are linked to mortality. According to (Hsiang et al., 2017) approximately 66% of 

expected damages have to do with mortality in the US: for an increase of average temperature 

8 degree Celsius, the cost attributable to mortality is 7% of GDP (when temperature rises around 

3 degrees, expected costs are around 1% of GDP).  

The existing literature, mainly for developed countries, has pointed to a generally U-

shaped type of relationship between temperature and mortality risks. Using flexible regression 

models over longitudinal monthly weather and mortality data for most municipalities in 

Argentina spanning seven years, from January 2010 to December 2019, our study has confirmed 

this relationship from a countrywide perspective since it encompasses 85 per cent of the 

 

30 This same result is found by other authors (see (Deschenes, 2014) p. 614). However, almost not related 

is not cero related. As shown in (A. I. Barreca, 2012), Panel B Figure 3) cold is somehow positively related 

to cancer. As discussed in Yu et al (2019), there is evidence that cancer cells may grow faster in cold 

environments.  
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country’s population. This was achieved using weather data from 71 closest meteorological 

stations. 

Temperature extremes impact Argentina’s population already (estimated average 

yearly damages related to mortality are approximately 0.8% of 2019 GDP), and climate change 

will cause a net increase in excess deaths due to extreme of 0.7% of GDP under a pessimistic 

scenario, and a gain of 0.15% of GDP if climate changes is mild. (Carleton et al., 2020) also finds 

that some countries and regions would benefit from climate change: for example, Europe in 

both optimistic and pessimistic climate scenarios and the US in the optimistic RCP4.5 scenario.  

Our study does have limitations. First, some have to do with impacts that we do not 

account for.  Climate change not only affects mortality through temperature variations but it 

also induces indirect effects as a higher frequency of natural catastrophes that indirectly imply 

more deaths. Indirect additional deaths are not accounted for in the present study. 

Second, there are several limitations in the data we were able to obtain that are not 

easy to solve. The available population data did not allow us to construct separate mortality 

rates for infants, i.e. younger than one year old, which are far more susceptible to thermal stress 

than other young children, as previously mentioned (Keim et al., 2002). Therefore, the fact that 

our results show no statistically significant influence of extreme temperatures on children’s 

mortality rates has to be taken with caution. However, even if it were possible to separate a 0-

1 years old, a significant result would not necessarily occur. (Yu et al., 2019) did not find it for 

China, (Otrachshenko et al., 2017) did not see that outcome for Russia, and the same happens 

in (Deschênes & Greenstone, 2011). The reason may be that, where possible, infants are well 

protected from extreme temperatures by their parents. 

Mortality is obviously an extreme outcome, and thus underestimates the overall effect 

of extreme temperatures on human health because there are many milder outcomes that may 

be related to temperature. Unfortunately, there is no detailed countrywide medical database 

available to estimate both mortality and morbidity impacts.31 

Third, and somehow related to the previous one, we omit to explicitly account for 

individual and policy induced averting behaviour. A possible source of underestimation comes 

from the adoption of precautionary measures, particularly air conditioning, which have a 

protective effect in extreme temperatures (A. Barreca et al., 2015). Adaptation is possible 

through changes in outdoor activities, geographical mobility, heating and air conditioning 

adoption or more energy consumption due to a more intensive use of existing cooling and 

heating appliances. Adaptation may vary by income since it changes access to better healthcare 

and to heating and air conditioning appliances (Cohen & Dechezleprêtre, 2022). Some articles 

make an effort to consider adaptation using data for defensive investments as residential energy 

consumption or air-conditioning acquisition ((Deschênes & Greenstone, 2011); (A. Barreca et al., 

2015); (Carleton et al., 2020)), but we do not have that type of data at the county level (to match 

with our database). Hence, considering explicitly adaptation is out of the scope of our paper. 

Hence, in that sense, our results can be read as an upper bound of mortality but not of costs 

since adaptation involves expenditures.  

 

31 Morbidity data was requested from the authorities but not submitted apparently because of problems 

in data quality.  
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Fourth, we made some assumptions that could be changed. An implicit assumption is 

that population distribution across municipalities would remain constant under climate change. 

Mortality changes as a result of climate change depends on population changes in level and in 

terms of its composition as an aging population implies higher costs since older people are more 

sensitive to temperature extremes. When considering population aging, the gains from climate 

change under the RCP4.5 decrease but do not revert their sign.  

Fifth, given the sparse distribution of the station network, interpolation of weather 

parameters from distant stations might have introduced measurement error. To limit the chance 

of this type of error happening, we follow the convention of excluding weather stations further 

than 100 kilometres away from each municipal geographical centre. Satellites might provide 

better weather information, at least in terms of spatial coverage (Kloog et al., 2014), but we 

leave this to future research. As pointed out before, there is also a gap in the merge between 

local and international temperature data.  

Having pointed out the potential shortcomings of this research, we believe this study 

provides valuable information on weather determinants of mortality in Argentina. The 

estimation approach employed in this paper helps to disentangle the causal effect of 

temperatures on mortality risk while controlling for possible confounders, thus reducing the 

chance that the observed temperature-mortality link could have been driven by omitted factors 

associated both with weather and mortality.  

Finally, the results indicate that temperature is important in terms of mortality, but is 

also relevant in terms of the implied monetary damages. Having that information is key for both 

adaptation and mitigation policies’ decisions based on benefit-cost analysis.  
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Annex  

Figure A.1. Gap between Argentina’s meteorological system temperature and NEX-GDDP 

data 

 

Panel A. Error in Scenario 8.5 

 
 

 

Panel B. Error in Scenario 8.5 

 
 
Note: Present (observed) is the information from the Argentina’ meteorological system whereas Present 

(prediction) is the NEX-GDDP data. 
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Figure A.2. Changes in temperature per district: RCP 8.5 

 

 

 
 
Source: Own elaboration.  
Note: We include here only the changes in temperature and not in deaths and damages because the number of 
observations does not allow calculating coefficients per bin per district, and we were to use the national estimates 
to each district, estimates would not do a good job when compared with actual mortality data.  


