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Abstract

In this paper we investigate the performance of five causality-detection methods and how

their results can be aggregated when multiple units are considered in a panel data setting. The

aggregation procedure employs voting rules for determining which causal paths are identified

for the sample population. Using simulated and real-world panel data, we show the perfor-

mance of these methods in detecting the correct causal paths in comparison to a benchmark

that comprises a standard representation of growth processes as ground truth model. We find

that the results may be better when only simulated, instead of real-world, data are analyzed.

While this may suggest that the methods presented here are currently incapable of detecting

causal links, it is plausible that the ground “truth” may incorporate false relations.

Keywords: Granger causality, Transfer Entropy, Stochastic Causality, LiNGAM, Ground Truth,

Economic Growth.

JEL Classification: C18, C43, O47.

1 Introduction

The notion of causal relation has been, until recently, only used in heuristic terms in empirical

studies. That is, it has been applied solely to offer intuitions behind mathematical or statistical

relationships within models and datasets. However, in the last decades, there has been a shift as

researchers seek to provide precise and formal characterizations of the previously vague concep-

tion. The literature now presents a plethora of approaches to both the treatment of causality in
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already available networks of relations among variables, as well as the detection of causal rela-

tions in data (Peters et al., 2017; Schölkopf et al., 2021). But this diversity comes at the price of a

lack of consensus among the different methods when no agreed-on ground truth model exists.

In the context of a panel data structure, when the same causal detection method is applied

on each individual time series, it could produce dissimilar results. This is particularly worrisome

when the phenomenon under study is assumed to be common to all the units in the panel, despite

the differences that might arise when each corresponding time series is analyzed in isolation. In

more precise terms, the question is, given variables X and Y, to detect whether a causal relation

between them exists for all the panel, by checking its validity for each individual i. But a problem

arises if this is true for some individuals and not for others.

In Econometrics, the standard concept of causality was introduced by Granger (1969), defined

in terms of a time series X and another Y. Holtz-Eakin et al. (1988) presented the first version of

Granger causality for panel data. But the assertion of the existence of a causal relation between

X and Y was predicated under the assumption of the homogeneity of the relation, i.e., that the

specifics of the causal model was the same for all the individuals in the panel. Dumitrescu and

Hurlin (2012) lifted this assumption by allowing heterogeneity among the units and the causal

relations. The test statistic they developed is obtained by averaging the Wald statistics of the

individual Granger estimates. Juodis et al. (2021) notice that the asymptotic properties of this

estimator make it prone to the emergence of a correlation between the estimates and the errors

when the number of periods is small while the number of individuals is large. They address it

by carrying out the averaging of the Wald statistics based on bias-free estimators.

The key idea behind these extensions of Granger causality to panel data is that the informa-

tion drawn from running the causality detection method on each individual is then aggregated.

In this paper we adopt this idea and extend it to other techniques of causality detection. The

difference resides in the method in which the individual estimations is aggregated to find a

consensus among them.

A possible way of achieving some degree of consensus among these results is by voting.

That is, by including a causal relation among variables only when it is detected in a majority

(or supermajority) of time series. In this paper, we explore the aggregation of the outcomes of

causality detection procedures on economic growth data. The idea is to obtain a network of

causally related variables reflecting the main features of growth processes.
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An important proviso is that we apply this only on pairs of variables. The reason is that, as

shown by Papana et al. (2021), causality detection methods like those to be considered here are

hard to apply to multivariate time series. If the relations involve more than two variables, these

methods are hampered by the existence of mediators, confounders and colliders (Glymour et al.,

2016). Thus, it is not convenient to consider more than two variables at a time.

The voting approach to the aggregation of causal evidence is scalable. That is, once a method

agrees on some causal link between two variables, we can see this as casting a vote for it in an

election towards the construction of an ensemble model. In this way, the agreement obtained

in the specific methods can be extended to a consensus among them when a plurality of the

methods endorse a link. The causal links in the ensemble model can be deemed as more robust

than those just agreed on by the specific methods.

Another advantage of this aggregation procedure can be seen in the light of the meta-analysis

conducted by Bruns and Stern (2019) that shows that, in the case of Granger causality, the lags

in the specification of the causal relations are obtained by overfitting the model. This indicates

that the specification is usually cherry-picked. We address this issue by considering a number

of different lags in a relation. Then, the existence of a causal relationship obtains by a weighted

voting process where each unit casts votes for the different lags and the total number of its votes

it gets is weighed by 1
L , where L is the number of lags under consideration. This gives us a

number for the relation, independently of the number of lags. Then, aggregating these numbers,

if their sum passes the criterion of acceptance under voting, the relation among the variables is

included in the causal graph.

One of the main reasons justifying the adoption of this methodology is the possibility of

obtaining empirical evidence upon which future theoretical models can be developed, inverting

the usual top-down approach to modeling in Economics. Nevertheless, this, as all bottom-up

approaches, has a downside: its sensitivity to the quality of the data. That is, if the datasets are

scarce or somehow imprecise, the relations detected may be erroneous while the correct ones

may be missed.

The main contribution of this paper resides in the introduction of voting as a method of

aggregation of causal information. This methodology facilitates assessing both the positive and

negative aspects of the different methods. We also discuss the convenience of using ensemble

methods obtained by aggregating the results of the individual procedures of causality detection.
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The remainder of the paper is organized as follows. Section 2 describes the causality detection

techniques, the vote aggregation procedure, and the data on which they are applied. Section 3

presents the results over synthetic and real-world data. Finally, Section 4 concludes. Additional

information is contained in Appendix A.

2 Data and methodology

2.1 Data

The dataset used in this study is extracted from the Penn World Table (PWT) database (Feenstra

et al., 2015). Our sample covers 62 developed and developing countries for the period 1961–2019.

We work with 11 time series of annual frequency. The variables with their corresponding de-

scription are detailed in Table 1. The list of countries from which they were drawn can be found

in Appendix A.

Table 1: Variables used in this study (drawn from PWT)

Variable Description
GDP per capita growth rate (GROWTH) Expenditure-side real GDP at chained PPPs growth rate
Population growth rate (POP) Population (in millions) growth rate
Human capital (HK) Human capital index
Total factor productivity (TFP) TFP level at current PPPs (USA=1)
Real interest rate (IRR) Real internal rate of return
Depreciation (DELTA) Average depreciation rate of the capital stock
Exchange rate (XR) National currency/USD (market+estimated)
Investment (INV) Gross capital formation as a percentage of GDP
Government spending (GOV) Government consumption as a percentage of GDP
Openness (OPEN) Total merchandise trade as a percentage of GDP
Terms of trade (TOT) Price level of exports/Price level of imports (USA 2017=1)

The choice of this panel for our analysis is justified by the need to consider a phenomenon

like economic growth, which is usually conceived country-wise, with reduced across-border

influences. Accordingly, we can analyze the causal relations among variables for the individual

countries in the panel, which we later aggregate via voting, constituting an appropriate arena for

the evaluation of the performance of our proposal.1

1The result of this exercise can be depicted as a causal graph As shown by Raunig (2023), this is particularly useful
for the analysis of economic policies.
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2.2 Causality detection techniques

In this paper we focus on two classes of methods of causality detection.2 One is that of methods

based on autoregressive models. The other is that of those that rely on structural causal learning

techniques. The former methods are specific for time series analyses where a causal relation

between variables X and Y is understood as indicating that past values of X provide unique

information to predict or explain future values of variable Y. Conversely, any structural causal

learning method makes assumptions about the functional form, breaking the symmetry between

the variables, and enabling the identification of causal effects.

In this paper, we adopt two autoregressive-based methods, namely Granger Causality and

Transfer Entropy. In turn, we apply three structural causal learning methods. One is Stochastic

Causality and the other two are based on the linear non-Gaussian acyclic model (LiNGAM):

ICA-LiNGAM and Direct-LiNGAM.

Granger causality is based on the premise that the causes precede the effects (Granger, 1969).

To claim that one variable causes another, past values of an independent variable in a regression

must have a significant effect on the dependent variable, given the past values of the latter. This

estimation method not only allows us to detect causality but also its direction, which can be

unidirectional or bidirectional. It should be emphasized that Granger causality is only applicable

to linear structures. Therefore, if there are nonlinearities in the data, the true causal relationships

between variables might not be accurately captured.

Since the Granger estimation requires that the time series are stationary, we proceed by differ-

encing the entire dataset if the Dickey-Fuller unit root test rejects the hypothesis of stationarity

of the original series. In the case of simulated data, we run the Granger test with one lag for

each pair of variables, while for the real-world growth dataset, we obtain estimations for one to

four-time lags. We use for this task the R package lmtest. In the vote aggregation procedure, each

of the lagged specifications casts a vote if the p-value is less than 0.05. Each of these votes, four

in total, counts as 1/4 of a single vote.

Transfer Entropy is a non-parametric method based on Information Theory that uses the

concept of information transfer to detect causal relationships (Schreiber, 2000). The entropy of a

variable measures its degree of uncertainty or randomness. Thus, Transfer Entropy from X to Y

2We do not consider methods based on the independences among variables, like PC or PCMCI (Runge et al., 2019;
Spirtes and Glymour, 1991).
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measures the reduction in uncertainty (entropy) about the values of Y gained from the knowledge

of the values of X, given the past values of Y. It is based on the same general principles of

Granger Causality, but Transfer Entropy does not require any assumptions about the underlying

structure of the data (Barnett et al., 2009). Therefore, we use Transfer Entropy to capture possible

nonlinear causal relations that could not be detected with Granger Causality. Specifically, we

apply the Shannon version of Transfer Entropy, using the R package RTransferEntropy. In the

aggregation stage, a causal relation gets one vote if the p-value of the estimation is less than 0.05.

The Stochastic Causality approach is based on the information obtained by running a kernel

regression of Y against some variables, including X to obtain a model Y = f (X) and a kernel

regression to get X = g(Y). The results are evaluated according to three empirical criteria and

are summarized in a unanimity index that determines whether a causal path exists among X

and Y (Vinod, 2017, 2019). The first criterion is based on the application of the Wu-Hausman

endogeneity test to choose between Y = f (X) and X = g(X). The second criterion selects

the model with the smallest absolute value of the residuals. Finally, the third criterion chooses

the model with the higher prediction accuracy, using the general measure of correlation for

asymmetry of Zheng et al. (2012). Then, a unanimity index, ranging from -100 to 100, measures

the degree of consensus among the three criteria regarding the direction of causality. The index

equals 100 if all the criteria agree on the same causal direction. We adopt here a conservative

threshold of 90 in absolute value and a significant p-value to indicate the presence of a causal

relationship. A shortcoming of this method is that it does not detect bidirectional causal paths.

Therefore, the directed acyclic graph (DAG) representing the outcome of the method tends to

have less directed edges than those generated by other techniques. In our analyses, we use the R

package generalCorr to produce the estimations in this approach.

LiNGAM (Linear Non-Gaussian Model) is a statistical model that assumes a linear relation-

ship between variables with a non-normally distributed error term. In this setting, the asymmetry

between the residuals in the regressions of X on Y and Y on X allows to distinguish cause from

effect. The reason is that the regression residuals are independent of the predictor only for the

correct causal direction. This approach was first introduced by Shimizu et al. (2006) with the

ICA-LiNGAM algorithm, which uses independent component analysis (ICA) for the estimation

of the model. Afterward, Shimizu et al. (2011) developed the Direct-LiNGAM algorithm, which

improves upon ICA-LiNGAM by ensuring the convergence of the procedure of inference in a

specific number of steps and with a known level of complexity. The R package rlingam was used
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to implement both versions of the method.

We also apply two ensembling techniques, combining the predictions of the different meth-

ods. On one hand, ensemble∩ incorporates a causal path only if all the methods agree on its

inclusion, while ensemble∪ includes a causal path if at least one of the methods detects it.

2.3 Vote aggregation

We run each method at the country level, disregarding the panel structure of the dataset. This is,

on one hand, to detect patterns that correspond to single economies. But more importantly, with

the exception of Granger causality, the remaining causality detection techniques to be applied

are not defined for panel data and thus force us to run our analysis country-wise. Consequently,

we obtain a large class of results for each method that we seek to aggregate into a unified causal

structure valid for a relevant subset of the sample of countries.

A useful way to do this is through a voting system, which involves considering each country

as a voter who casts a vote on the presence or absence of a causal relationship between a pair of

variables. Then, the existence of a causal path between these variables is determined according

to a voting rule that indicates how the votes are aggregated. Among the large class of voting

rules, the most commonly used are unanimity, the simple majority rule, and the two-thirds rule.

Each of these procedures implies a certain degree of robustness in the final results obtained.

The unanimity rule yields a causal path only if that relation is detected in all the countries of

the sample. The two-thirds rule, instead, requires that at least two-thirds of the sample share a

causal link to accept it, while the simple majority rule requires an agreement of more than half

of the sample.

Thus, the application of the simple majority rule mandates that a causal path is included only

if it is detected in at least 32 countries among the 62 in the sample. The two-thirds rule, in turn,

accepts a causal relationship only if it receives at least 42 votes.

Figure 1 exemplifies the aggregation procedure for three individuals and three variables.

Each individual runs the causal detection procedure, obtaining a causal graph, represented as an

adjacency matrix, where the rows represent the effects and the columns indicate the causes. In

this matrix, a causal relationship from variable A to variable B corresponds to an entry 1 in the

(B, A) position, implying that the individual will cast a vote in favor of this relationship. The

matrices of the three individuals are then added, yielding an adjacency matrix with the total
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number of votes for each causal path. A voting rule is then applied on each cell of this matrix.

Only the directed edges that get approved by the voting rule are kept in the aggregate causal

DAG.

Figure 1: Diagram of the voting aggregation

Let us note that some variables have a constant value in some countries of the sample. It is

thus not feasible to apply any of the causality detection methods discussed above to find relations

among those variables. This is the case of the exchange rate in Ecuador, the United States, and

Zimbabwe, as well as the total factor productivity in the United States. This reduces the size of

the sample that can be used to study the relations among these variables, lowering the number

of votes required to accept a causal effect between them.

In the next section, we present the results obtained by applying this methodology to simulated

and real-world data.
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3 Results

3.1 Synthetic data

As a first step in our study, we start by evaluating the quality of the results obtained by each

method. We proceed by simulating a growth dataset with the same variables as the one obtained

from the Penn World Table. This involves creating a causal direct acyclical graph (DAG) in which

the same variables are the nodes while the arrows among them represent the causal relations

assumed in economic growth theory. We intend this graph to represent the ground truth against

which we can compare the evidence found by the different methods of causal detection.

Building the ground truth model poses a challenge since there exist different models of eco-

nomic growth, in which the assumptions, functional forms and variables involved differ widely.3

For our exercise, we disregard as much the specific details of the different models and include

all the variables in Table 1, establishing pairwise links whenever such relation is favored in the

literature, checking for the consistency of the resulting graph, depicted in Figure 2.

Figure 2: Ground truth DAG

GROWTH

POP OPEN INV GOV TFP

TOT

HK

XR IRR DELTA

We proceed by generating time series based on the ground truth model. We do this for

varying lengths (T = 59, 200, and 2000). For simplicity, we assume that the independent variables

are defined by a stationary AR(1) process with a white-noise error term:

Xt = α + β Xt−1 + εt ; β < 1 , εt ∼ N
(
0, σ2)

3To have a taste of this variety of models, see textbooks like Barro and Sala-i-Martin (2004) or surveys like Acemoglu
(2012).
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The three dependent variables, in turn, are defined by the following linear specifications:

OPENt = f (TOTt, XRt) + ηt

INVt = f (IRRt, DELTAt) + υt

GROWTHt = f (OPENt, INVt, POPt, GOVt, TFPt, HKt) + ξt

Each method generates a causal graph, which can be compared to the graph of the ground

truth. We evaluate the results according to four performance measures: recall, precision, specificity,

and the F1 score. We define TP, TN, FP, and FN as, respectively, the quantities of true positive,

true negative, false positive, and false negative edges obtained by a method, compared to the

ground truth model. That is, TP is the number of causal links in the ground truth graph that are

correctly detected while TN is the number of potential links absent in the ground truth that are

rightly discarded by the method. In turn, FP is the number of non-causal links wrongly deemed

to be causal while FN represents the correct links that are missed by the method. Then:

recall = TP
TP+FN , precision = TP

TP+FP , specificity = TN
TN+FP , F1-score = 2TP

2TP+FP+FN .

A method that yields a high recall recovers most of the correct causal links of the ground

truth, while higher levels of precision indicate that the method returns more correct results than

wrong ones. Specificity measures how well the method can identify links absent in the ground

truth. The F1 measure is the harmonic mean of recall and precision and indicates the accuracy of

the method.

The results are presented in Table 2, where values are expressed in percentage terms. We

can see that Direct-LiNGAM yields, in general, the best results, although no method is perfectly

accurate.
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Table 2: Performance metrics on ground truth

Method T Recall Precision Specificity F1-score
Granger (lags=1) 59 10.0 7.7 88.0 8.7
Transfer Entropy 59 0.0 0.0 94.0 0.0
Stochastic Causality 59 0.0 0.0 95.0 0.0
ICA-LiNGAM 59 20.0 15.4 89.0 17.4
Direct-LiNGAM 59 40.0 28.6 90.0 33.3
ensemble∩ 59 0.0 - 100.0 0.0
ensemble∪ 59 50.0 13.2 67.0 20.8
Granger (lags=1) 200 20.0 14.3 88.0 16.7
Transfer Entropy 200 30.0 23.1 90.0 26.1
Stochastic Causality 200 10.0 33.3 98.0 15.4
ICA-LiNGAM 200 30.0 25.0 91.0 27.3
Direct-LiNGAM 200 80.0 72.7 97.0 76.2
ensemble∩ 200 0.0 - 100.0 0.0
ensemble∪ 200 100.0 25.6 71.0 40.8
Granger (lags=1) 2000 10.0 5.6 83.0 7.1
Transfer Entropy 2000 30.0 30.0 93.0 30.0
Stochastic Causality 2000 0.0 0.0 99.0 0.0
ICA-LiNGAM 2000 30.0 23.1 90.0 26.1
Direct-LiNGAM 2000 30.0 18.8 87.0 23.1
ensemble∩ 2000 0.0 - 100.0 0.0
ensemble∪ 2000 70.0 16.3 64.0 26.4

3.2 Real-world data

When we turn to the real-world data drawn from the Penn World Table dataset, the first result is

that no method obtains causal relations unanimously detected in each country. Therefore, all the

DAGs presented in this section are the ones that pass either the simple majority or the two-thirds

rule. In the DAG corresponding to any method, causal paths are tagged with the number of

votes that it gets under that method.

The results obtained according to each method are the following:

• Granger: no DAG can be generated by even the majority rule.

• Transfer Entropy: two different DAGs are generated under the majority and the two-thirds

rules. In both human capital is the source of all the causal links.
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Figure 3: Simple majority rule (Transfer Entropy)
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Figure 4: Two-thirds rule (Transfer Entropy)
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• Stochastic Causality: we find similar results to those obtained by the Transfer Entropy

approach, with the human capital as the cause of most of the variables. Unlike with Transfer

Entropy, we do not find a causal relationship between human capital and economic growth.

Figure 5: Simple majority and two-thirds rule (Stochastic Causality)
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• The LiNGAM methods: economic growth is causally independent of the rest of the vari-

ables in all the DAGs generated under the two versions of this approach.

– ICA-LiNGAM: the growth rate of the population plays a key role, by initiating all the

causal paths in the simple majority DAG, while in the case of the two-thirds DAG, it

cedes part of its role. In that case, all the causal paths are initiated either by the growth

rate of the population or the rate of depreciation of capital.
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Figure 6: Simple majority rule (ICA-LiNGAM)
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Figure 7: Two-thirds rule (ICA-LiNGAM)
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– Direct-LiNGAM: the two-thirds rule does not yield a DAG, while many variables are

causally independent of the others in the simple majority DAG. The rate of deprecia-

tion of capital is one of the sources of causal paths in the graph. The other source is

the real interest rate.
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Figure 8: Simple majority rule (Direct-LiNGAM)
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One aspect worth highlighting in the results is that, except for Stochastic Causality, which

lacks the ability to detect it, no method maintained a bidirectional relationship between the

variables post-voting. In other words, in this case the methods did not find it for a sufficient

majority of countries.

• ensemble∪4: the two graphs inherit from Transfer Entropy the only causal link involving the

variable Growth, namely as caused by Human Capital. The graphs are the following:

4ensemble∩ is empty both under the majority and the two-thirds rules, even disregarding votes for Granger (that
yields an empty graph in both cases).
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Figure 9: Simple majority rule (ensemble∪)

GROWTH POP

OPEN

INV

GOV

TFP

TOT

HK

XR

IRR

DELTA

Figure 10: Two-thirds rule (ensemble∪)
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The comparison to the ground truth model of subsection 3.1 is summarized in the following

table (notice that Granger and ensemble∩ are not included since these two methods do not yield

graphs):

15



Table 3: Performance metrics with real-world data (majority rule)

Method Recall Precision Specificity F1-score
Transfer Entropy 10.0 10.0 91.0 10.0
Stochastic Causality 0.0 0.0 91.0 0.0
ICA-LiNGAM 10.0 3.6 73.0 5.3
Direct-LiNGAM 0.0 0.0 94.0 0.0
ensemble∪ 20.0 5.1 63.0 8.2

Table 4: Performance metrics with real-world data (two-thirds rule)

Method Recall Precision Specificity F1-score
Transfer Entropy 10.0 12.5 93.0 11.1
Stochastic Causality 0.0 0.0 91.0 0.0
ICA-LiNGAM 10.0 6.7 86.0 8.0
Direct-LiNGAM 0.0 - 100.0 0.0
ensemble∪ 20.0 8.0 77.0 11.4

We can see that scores are consistently equal or higher under the two-thirds rule, although

they are (unsurprisingly) worse than with simulated data. We also can see that Transfer Entropy

is the method that, under the majority rule, seems to yield better scores than Direct-LiNGAM. In

the case of the two-thirds rule, the best results are obtained by ensemble∪.

4 Discussion

In this paper, we have proposed a novel approach based on voting rules for determining causal

relationships in panel data settings. This method allows to obtain a causal structure that is

supported by several independent sources. Because of the voting structure used, this method

could also perform a more comprehensive analysis in terms of country subgroups, in cases

where it is relevant. This is because it is possible to disaggregate the votes obtained for a causal

relationship into the subgroups identified in the data.

The results reported in Tables 3 and 4 could be seen as indicating that the methods applied

in this study may not be too efficient in detecting the causal links present (and absent) in the

ground truth. This idea may get reinforced by the results obtained with synthetic data (Table 2).

But while it may be the case that the methods presented here are still too crude to provide

causal inferences, an alternative explanation can be put forward. Namely, that the ground truth

itself is inaccurate. While the former argument cannot be discarded, the latter shows why the
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exploration of causal detection methods matters.

The causal links in the ground truth should not be taken as having indisputable validity. On

the contrary, the ground truth model should only be taken provisionally and fully accepted if it

gets validated by data. Therefore, the real power of the methods explored here is the possibility

of detecting the strongest causal relations in the datasets.

In our analysis, we found that real-world data under the ensemble∪ method supports, as the

only relevant cause of growth, the human capital in the economy. Notice that this result can

be understood in terms of the crucial difference between correlation and causation. So, while the

ground truth model is consistent with the theory and evidence of economic growth, most of the

links in it may just represent strong correlations, with human capital as the main underlying

common cause.

To examine if this is the case, we may need to apply the approach of Pearl (2000) to detect

confounders. Natural experiments in which some variables are intervened may provide the infor-

mation needed to implement such exploration. In the meanwhile, the exploration of alternative

Machine Learning methods seems worthwhile.
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A Appendix

Table 5: Countries in the sample

Argentina United Kingdom Malaysia
Australia Greece Nigeria
Austria Guatemala Netherlands
Belgium Indonesia Norway
Bolivia India New Zealand
Brazil Ireland Peru
Canada Iran Philippines
Switzerland Iceland Portugal
Chile Israel Paraguay
China Italy Sweden
Colombia Jamaica Thailand
Costa Rica Jordan Trinidad and Tobago
Cyprus Japan Turkey
Germany Kenya Taiwan
Denmark Republic of Korea Uruguay
Dominican Republic Sri Lanka United States
Ecuador Luxembourg Venezuela
Egypt Morocco South Africa
Spain Mexico Zambia
Finland Malta Zimbabwe
France Mauritius
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