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Abstract

The concept of Perfect Bayesian Equilibrium [PBE ] refines Bayes-Nash
equilibria embodying notions of sequential rationality. However, on one
hand it leaves beliefs totally unrestricted for information sets off the equi-
librium path. On the other hand, it lacks structural robustness, as even
the same game modelled with different extensive forms can have a different
set of PBE.

The sequential equilibrium [SE ] stands out as a suitable refinement
that has more structural properties and gives place to reasonable off-path
beliefs. However, SE requires different agents using exactly the same
perturbations to generate consistent beliefs off equilibrium path, which
may be too strict a requirement. Furthermore, testing whether a certain
assesment could be a potential SE is cumbersome, and involves in principle
finding the corresponding sequence of perturbations or completely mixed
strategies.

In this paper, we develop a generalization of SE, the robust equilibrium
[RE ], which refines PBE in a less restrictive way, and which computation
can be algoritmically carried out solving a relatively simple set of inequal-
ities. Although it can be described as an assesment consistent in a more
general way by the use of sequences of perturbations, it can also be char-
acterized by an assortment of nodes according to equilibrium behavior
strategies.
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1 Introduction

1.1 Equilibrium refinements

The concept of Perfect Bayesian Equilibrium [PBE] is a useful refinement for
games of imperfect or incomplete information, that have agents making choices
in successive information sets. PBE refine BNE using reasonable beliefs as a
rationale for justifiable choices.

It is also possible to strengthen the concept of PBE : one of the most frequent
reformulations is that of the Strong Perfect Bayesian Equilibrium [ SPBE]: Nor-
mally in this strengthening, a SPBE is defined as a PBE that is also a Sub-game
perfect BNE.

Both PBE and SPBE allow for freedom in the way beliefs are deemed rea-
sonable, when they apply to information sets out of the equilibrium path. In
this regard, the refinement given by the sequential equilibrium prescribes that
beliefs must be consistent in the sense of being the limit of consistent beliefs of
purely randomized profiles approaching equilibrium play.

Both PBE and SE have strengths and weaknesses. The SE forces agents
to have mutual constraints in the way players could justify deviations from
equilibrium. PBE leave more freedom (if not too much) on the way beliefs
could be built out of the equilibrium path.

1.2 Aim of the paper

The aim of this work is to provide an intermediate refinement between PBE
and SE that could overcome the most obvious drawbacks of the simple PBE
and grasp the reasonability of off-equilibrium beliefs, without getting into the
restrictions that intertwine beliefs in a SE.

2 Definitions

2.1 Extensive form of a game

To define a game in extensive form, as usual in the literature define the following
elements:

• A set of players:



3

– A (finite1) set I = {1, 2, . . . N} of choosing players.

– The additional player Nature, a dummy player that randomizes be-
tween actions with pre-fixed probabilities, and serves as a way to
introduce randomness, luck, etc.

• A game tree: The tree is composed of:

– A set of decision nodes. A node is an instance in which a player or
the Nature takes an action.

– A set of actions. An action goes from one node (the immediate
predecessor) to another (the immediate successor). The game tree
is always directed, in the sense that a succession relationship can be
constructed over the nodes, and this constitutes a strict partial order
over the set of nodes.

– A set of final nodes. A node is a final node if it has no immediate
successor.

– A labeling of nodes that indicate which player plays at each node.

– A partition of the set of decision nodes into information sets, that
fulfill:

∗ At each information set, each node belongs to the same player.
∗ There is a one-to-one correspondence between the set of actions

in one node and the one in any other node that belongs to the
same information set.

– A vector of payoffs for each player at every final node.

– A decision node, called the root node, that has no predecessor. Each
game tree has one and only one root node.

A path (from a node N1 to another one Nm) is a sequence of nodes N1, N2, N3, . . . Nm

such that each node is direct successor to the preceding one. For any game tree,
we must have that for any (non root) node, there is exactly one path from the
root to that node. This also implies that no node can be a successor to itself.

In this paper, we will limit our attention to finite games (games that have
an extensive form with a finite number of nodes). We will also restrict the
analysis to games of perfect recall. A game satisfies perfect recall if every path

1Though in principle we could consider games with infinite players, we will deal in this
paper exclusively with finite games for a finite number of agents.



4

intersects any information set at most in one node, and for any two nodes Ni

and Nj belonging to an information set N for player h, it must be the case
that the corresponding paths from the root to the nodes must cross the same
information sets of the player in sequentially the same order, and in each of
such information sets the same action must have been played. In other words,
no player is allowed to forget something he had known of the game before, or
an action he had played before.

2.2 Normal form of a game

A game given in extensive form can also be described in another way, the so
called normal form. The normal form of a game involves:

• A set of players I = {1, 2, . . . N}.

• A set Si of strategies or contingent plans for every agent i.

• The set of possible (pure) profiles given by
∏N

i Si

• The payoff function, that indicates for each profile an N -dimensional vec-
tor of payoffs for each agent.

2.3 Extensions

There are various extensions of this simple scheme.

• One important extension is that of mixed strategies. The mixing extension
of the normal form has each agent mixing over the set of strategies to
generate mixes. Here a mixing profile is built with the mixing strategies
of each agent.

We typically refer in this work to mixed strategies as a profile of random-
izations for each agent:

〈(
σh

)N

h=1

〉
.

• Another important extension is useful to translate mixing strategies and
choices to election of actions on each information node. That is the concept
of behavior strategies.

Each agent h chooses a behavior strategy δh that indicates which action
to take on each information set.

For the finite games we are analyzing here, in which perfect recall is as-
sumed, we have this well-known result: for every strategy profile in the
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mixing extension of the normal form, there is a behavior strategy that
yields exactly the same result than the strategy mix, and viceversa.

• When justifying certain choice on an information set, many equilibrium
refinements use the concept of belief to justify choices under sequential
equilibrium.

A belief set for an information set is a vector of probabilities assigned
to each node of the information set. This is typically understood as the
probability the agent playing in the set assigns of having arrived to each
node of the information set.

A belief system is a set built with one belief set for each information
set of the game tree.

• An assessment
(〈(

σh
)N

h=1

〉
, (µg)

)
of the game is a vector built from

two components:

– a strategy profile
〈(

σh
)N

h=1

〉
, where h indexes the agents.

– a belief system (µg), where g indexes the information sets.

3 A motivational example

3.1 An entry game

Let us introduce the following example: Player 1, a potential entrant into a
market, must take the decision of whether to enter [E ] or not [N ].

If he decides entering the market, he must simultaneously interact with an-
other company, Player 2, the incumbent. Both firms must simultaneously choose
between fighting [F ] and getting into a price war, or accommodate [A] into a
friendly competition scheme.

If firm 1 decides against entering, firm 1 earns 0, while the incumbent gets
3.

Payoffs from the simultaneous interaction are given in the matrix of table 1.
In passing, notice that the entrant has A as a dominant strategy in the

simultaneous game, while the incumbent has different best responses for each
action player 1 could play in this simultaneous stage.
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Incumbent
F A

Entrant F (−3, 0) (1, −1)
A (−2, 0) (3, 2)

Table 1: Payoffs in the simultaneous part of the game.

1 (0, 3)

1′

N

E

2F 2A

F A

2

(−3, 0) (1, −1) (−2, 0) (3, 2)

F A F Aµ

Figure 1: First tree for the entry game.

3.2 Game I

In figure 1, we have modeled an extensive form of the complete game. Player 1
has an initial decision node signalling the E, N decision. After that, if he plays
E, he must chose again between F and A after node 1′; this decision in this case
is simultaneously being taken by agent 2 in his information set.

3.3 Normal form

To find the BNE we resort to the normal form of the game. We could represent
this in matrix form (see table 2).
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Incumbent
F A

Entrant

NF (0, 3) (0, 3)
NA (0, 3) (0, 3)
EF (−3, 0) (1, −1)
EA (−2, 0) (3, 2)

Table 2: Normal form of the entry game.

3.4 Bayesian Nash equilibria

3.4.1 Pure equilibria

In the table 2 above, we have marked best responses for each agent; it is clear
that the game has 3 pure BNE : profiles ⟨NF, F ⟩, ⟨NA, F ⟩ and ⟨EA, A⟩.

3.4.2 Mixed equilibria

We won’t discuss mixed equilibria in depth. We just remark that agent 1’s EF

is strictly dominated by EA. Discarding EF , agent 2 finds F weakly domi-
nated. We can then deduce that the only non-degenerated mixed equilibrium is
⟨(p, 1 − p, 0, 0) , (q, 1 − q)⟩ with q ≥ 3/5.

3.4.3 (Pure) equilibrium characterization

The equilibrium profile ⟨EA, A⟩ is in some sense the most “sensible”. Agent 1
plays E, and in the following simultaneous sub-game, both players choose Nash
equilibrium actions ⟨A, A⟩. The other two profiles are more inconsistent in one
way or the other.

Profile ⟨NF, F ⟩ is highly problematic: it has agent 1 playing F , a dominated
action in the simultaneous part of the game.

On the other hand, profile ⟨NA, F ⟩ is more appealing: for a start, it makes
agent 1 play the dominant strategy A.

To distinguish these 3 equilibrium profiles, we will delve into a common
refinement in the literature, that of PBE.

3.5 Perfect equilibria

The most widespread definition of Perfect Bayesian Equilibrium [PBE ] is the
following:
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Let
(〈(

σh
)N

h=1

〉
, (µg)

)
be an assessment of an extensive form of a game.

Then, this assesment constitutes a PBE if:

i) the profile
〈(

σh
)N

h=1

〉
constitutes a BNE for the game.

ii) Each agent, under his beliefs, is maximizing his expected payoff with the
behavior strategy followed on each information set [Sequential rationality].

iii) Beliefs are updated with the use of Bayes’ rule whenever it is possible
[Consistency].

1 (0, 3)

1′

N

E

2F 2A

F A

2

(−3, 0) (1, −1) (−2, 0) (3, 2)

F A F Aµ

Figure 2: The equilibrium ⟨EA, A⟩ marked in the game tree.

3.5.1 ⟨EA, A⟩

Figure 2 shows the chosen actions under the profile ⟨EA, A⟩ on each information
set.

We could acknowledge that this profile fits the definition of EBP: each agent
could be seen as maximizing payoffs on each information set in which he must
play; in particular, agent 2, which has an information set with more than one
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node, must set a belief set over this information set. However, Bayes’ rule forces
such belief set: µ = Pr (2F |2) and 1 − µ = Pr (2A|2) are forced to be 0 and
1, respectively. Under µ = 0, agent 2 clearly maximizes his payoffs with the
chosen action played in this equilibrium.

3.5.2 ⟨NF, F ⟩

1 (0, 3)

1′

N

E

2F 2A

F A

2

(−3, 0) (1, −1) (−2, 0) (3, 2)

F A F Aµ

Figure 3: Equilibrium profile ⟨NF, F ⟩ on the game tree.

The profile ⟨NF, F ⟩ (See figure 3) is clearly problematical. We could under-
stand agent 2’s option of playing F with any belief µ ≥ 2/3. However, agent 1 is
not satisfying sequential rationality on his information set 1′. Thus, this profile
cannot be a PBE.

3.5.3 ⟨NA, F ⟩

In figure 4 we could see this profile marked in the presented game tree. ⟨NA, F ⟩
is a PBE : Player 1 maximizes payoffs on each information set (node) in which
he has to make a choice, subject to what is being played. Player 2 chooses in his
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1 (0, 3)

1′

N

E

2F 2A

F A

2

(−3, 0) (1, −1) (−2, 0) (3, 2)

F A F Aµ

Figure 4: Equilibrium profile ⟨NA, F ⟩ on the game tree.

information set an action compatible with logical beliefs, given the equilibrium
profile: with µ = Pr (2F |2) ≥ 2/3 action F is justified, and although agent 1
could be playing A from node 1′, such node is not reached so as to enforce
updating of µ by means of Bayes’ rule so that it falls out of the interval [2/3, 1].

4 Difficulties

Of the 3 pure BNE, we have seen one [⟨NF, F ⟩] that can be discarded as
some player is not maximizing payouts on some information set. Another one
[⟨EA, A⟩] does not present major issues. The third one [⟨NA, F ⟩] presents an
equilibrium under which each agent is maximizing payoffs given logical, consis-
tent beliefs.

However, we notice an interesting problem with this equilibrium: after agent
1’s choice between E and N , players interact under a simultaneous instance
where both agents choose between F and A. The game tree of figure 1 is one
possible way of modelling the interaction.
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4.1 Second tree

1 (0, 3)

2

N

E

1′
P 1′

A

P A

1′

(−3, 0) (−2, 0) (1, −1) (3, 2)

P A P Aµ

Figure 5: Another possible modellization of the entry game.

However, such game form is not unique. In fact, figure 5 shows another
possible extensive form for exactly the same game.

In this extensive form, player 2 has a node immediately following decision
node 1 after the first agent chooses E. Then, player 1 chooses under imperfect
information, without knowing agent 2’s choice.

Both extensive forms are equivalent, in terms of the normal structure of the
game, and simply differ by a modelling decision of the analyst. We should not
expect many substantive changes in the central aspects of the game.

4.1.1 BNE

Since both extensive forms have exactly the same normal form (the one ex-
pressed in the matrix of table 2) the set of BNE must be the same for both.
Thus, the pure BNE for the game tree of figure 5 are still ⟨EA, A⟩, ⟨NP, P ⟩ and
⟨NA, P ⟩.
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4.1.2 PBE

We would thus be tempted to conclude that the PBE corresponding to the game
tree of figure 5 are the same that the ones seen on §3.5: after all, the difference
between both extensive forms is just a matter of modelling decision.

Alas, it could be seen that this is not the case here! Neither ⟨NF, F ⟩ nor
⟨NA, F ⟩ are PBE. The first profile cannot sustain sequential rationality for
player 1 at information set 1′ under no beliefs, since A gives greater payoffs
for any possible behavior strategy of player 2. The second profile cannot be
sustained as PBE because even when player 1 is choosing the payoff-maximizing
action A, player 2 is not maximizing payoffs with F , since A would make him
better-off.

4.1.3 Discussion

In the first place, this result is quite unappealing: depending on a choice of
modelling, we would have a perfect equilibrium profile or not!

A reason why this happens can be understood considering the role that
beliefs take in the choice of each agent. In the first modellization, we have agent
2 as “guardian” of beliefs. Under this extensive form, we could sustain F as
a reasonable choice, since this agent does not have a dominant strategy in the
simultaneous part.

In the second modellization, we make the first player bear the weight of
beliefs, but this player has only one sequentially rational alternative: choosing
A. Under this logic, player 2 cannot be sequentially rational playing F .

Another thing to consider is that the concept of PBE conditions every be-
havior on information sets posterior to an agent’s decision, but it does not con-
ditions immediate previous choices [except for nodes on the equilibrium path].
Why do we ask in figure 4 that agent 1 maximizes payoffs regarding what agent
2 chooses after him, but do not ask agent 2 to have beliefs compatible with what
player 1 is immediately choosing before? This may be more logical in games of
perfect information, but it is not that clear in a more general environment.

We would like some more robustness in the way equilibrium refinements deal
with different ways of modelling a game. Clearly, EBP is weak in this sense.
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4.2 Alternatives

4.2.1 strong PBE

A BNE is a strong perfect bayesian equilibrium [SPBE ] if the equilibrium
profile is a PBE and at the same time is sub-game perfect.

We could see that none of the profiles ⟨NA, P ⟩ o ⟨NP, P ⟩ are subgame-
perfect: hence, this stronger refinement discards these problematical equilibria.

1′

1

E

2F 2A

F A

2

(1, −1, 1) (3, 2, 1)

A Aµ 1 − µ

3A 3B 3C

F F

N

3

(−3, 0, 1) (−3, 0, −4) (−2, 0, 1) (−2, 0, −4) (0, 3, 1) (0, 3, −4)

T

V

T

V

T

VµA µB µC

Figure 6: Entry game modified tree, without strict subgames.

Notice however the game tree in figure 6. In this modified version of the
entry game, in which a third player makes a trivial choice between take or veto
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payments, we find three equilibria homologous to the previous ones: ⟨EA, A, T ⟩;
⟨NA, P, T ⟩; and ⟨NP, P, T ⟩. On the other hand, there is a new BNE ⟨EA, A, V ⟩
similar to ⟨EA, A, T ⟩ but having agent 3 vetting in case game play falls out of
⟨EA, A⟩’s path.

We observamos that in this modelling, profile ⟨NA, P, T ⟩ is a PBE with
beliefs µ ≥ 2/3, and µA = µB = 0, µC = 1. However, if we model the tree again
changing the game order putting first agent 2, we have the game tree in figure
7. Under this modellization, equilibrium profile ⟨NA, P, T ⟩ is not a PBE [and
thus, not a SPBE either]: player 2 is not maximizing his payoffs in the node in
which he plays, since A is the choice that generates greater payoffs.

4.2.2 Sequential equilibrium

One of the most used refinements in the literature is that of sequential equi-
librium [SE]: this concept involves, as the PBE, the analysis of assessments.

If we take up the tree of figure 4, we will notice that the EBP ⟨NA, P ⟩ is
not a SE : as figure 8 shows, any assessment must include the consistent belief
µ = 0.

The SE is an interesting refinement. We could think in two complex points
of this concept:

• On one hand, deviations from equilibrium under consideration by each
agent must be under certain relation.

• On the other hand, the definition of SE demands the definition of ran-
domizations near equilibrium, or so called perturbations. This is easily
studied for a simple tree, but it gets complicated easily with bigger trees.

• Finally, up to what we know, there is no generic mechanism or algo-
rithmthat allows direct computation of the SE of a game.

The SE has certain points of critique. Consider the following game, given in
extensive form in figure 9:

The game is given in normal form in table 3.
The game has only one pure BNE : the profile ⟨γ, b, II⟩. In a mixed equilib-

rium, player 1 always plays γ. There is a set of BNE with ⟨(σα, σβ , σγ) , (σa, σb) , (σI , σII)⟩ =
⟨(0, 0, 1) , (q, 1 − q) , (r, 1 − r)⟩ satisfying q ≤ 3/4 and r ≤ 1

2(1−q) .
Since any path through 2α or 2β is off-equilibrium, any set of beliefs for the

information set 2 (and 3) could be consistent with the application of Bayes’ rule,
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2

1

E

1P 1A

P A

1

(1, −1, 1) (3, 2, 1)

3A 3B 3C
3

(−3, 0, 1) (−3, 0, −4) (−2, 0, 1) (−2, 0, −4) (0, 3, 1) (0, 3, −4)

P

A

P A

T

V

T

V

T

VµA µB µC

N

Figure 7: Entry game modified tree, without strict subgames, with another
order of nodes.

so that an assessment with a set of beliefs that fulfills sequential rationality is
guaranteed to constitute a PBE.

What about the SE of the game? The SE is usually described as a refinement
in which agents tend to “believe the game will drift off-equilibrium path in a
similar way”, but that is nearly an overstatement. Maybe find a

quote?Figure 10 shows the complete set of mixed BNE (and PBE, provided accurate
beliefs are set) for game 2. Highlighted are two segments over the randomization
space (q, r) that form SE assessments with the correct beliefs.
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1 (0, 3)

1′

1 − ϵ0

N

ϵ0

E

2P 2A

P

ϵ1

A

1 − ϵ1

2

(−3, 0) (1, −1) (−2, 0) (3, 2)

P A P Aµ

Figure 8: ⟨NA, P ⟩ no es un equilibrio secuencial.

Player 3
I II

Player 2 Player 2
a b a b

Player 1
α (2, 2, −1) (4, −1, 0)

Player 1
α (2, 2, −1) (2, 0, 0)

β (4, 0, 5) (0, 1, 3) β (4, 1, 1) (0, 1, 3)
γ (3, 2, 2) (3, 2, 2) γ (3, 2, 2) (3, 2, 2)

Table 3: Normal form for the 2nd example game.

Let us consider the pure equilibrium profile ⟨γ, b, II⟩: under beliefs µ =
Pr (2α|2) , ν = Pr (3i|3), an assessment (⟨γ, b, II⟩ , (µ, ν)) is a SE if µ = 0 and
ν = 1. Notice that this involves a completely different evaluation about off-
equilibrium play: agent 2 believes that if he has to play, it is because agent 1
has deviated with β, while agent 3 believes that if he has to make a choice, it is
because agent 1 has played α. They couldn’t disagree more!

In fact, this disagreement is found in every SE, except for the small red
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1

2β2α (3, 2, 2)

α β
γ

(2, 2, −1) 3i 3ii

2

a b

(0, 1, 3)

a b

3

(4, −1, 0) (2, 0, 0) (4, 0, 5) (4, 1, 1)

I II I II

Figure 9: Extensive form for a second example.

q

r

Figure 10: The space of possible values of q and r in a mixed equilibrium for
game 2, with SE areas highlighted.

segment in figure 10.
If agents differ on hypothetical game play, why is this assessment consistent?

Basically because there is a common set of perturbations of gameplay that allows
in the limit for the said beliefs. For example, taking perturbations σα = 1

n2 ,
σβ = 1

n and σa = 1
n2 , we approach the said beliefs as n → ∞.
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The approach of using consistency by means of totally mixed randomizations
is sensible, in the sense that it discards illogical or unnatural beliefs.

1

N

21 22
2

θ 1

0.5
θ2

0.5

µ 1 − µ

Figure 11: A fragment of a tree.

In figure 11, in this section of a game player 1 plays away from Nature and
player 2’s information set. A PBE would admit any possible value of µ to
form the beliefs of agent 2 on his information set. However, every SE will have
µ = 1/2, the probability alloted by Nature to each type or move θ1, θ2.

1

2A 2B
2

3/4A 1/4
B

a a

3i 3ii

b b

ν 1 − ν

3

Figure 12: A fragment of another tree.

In figure 12, we start the game with agent 1, who mixes between A and B

with probabilities (3/4, 1/4). Then game proceeds to player 2’s information set, in
which the agent plays a with certainty. A PBE could in principle allow for any
value of ν that conforms to sequential rationality, while agent 2’s beliefs would
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be chained to agent 1’s mixing. However, a SE could only be formed with an
assessment satisfying ν = 3/4, which is reasonable, since any other belief would
imply an infringement of Bayes’s rule or a violation of the structure of the game.

Such restrictions to agents’ beliefs are sensible. We will prove in this paper
however that the approach of consistency taken by the SE paradigm is not
necessarily the only possibility of refining the PBE concept, and that indeed a
generalization of the SE can be proved to be enough to guarantee such sensible
belief constrains.

5 Robust equilibrium

5.1 Definitions

To advance with our formulation, we make some previous definitions. We bear
in mind a game in extensive form, as developed in 2.1.

Definition 5.1. The common origin for a group of nodes {Ni}i∈I is the
nearest common ancestor or predecessor, that is:

• a node O that is predecessor to every Ni and;

• if there is a node M that is predecessor to every node Ni, then O is
successor to M .

We will denote the operator that returns the common origin of two nodes N1

and N2 as O (N1, N2).

Example 5.2. In the modified game shown in figure 6, nodes 3A and 3B have
node 1′ as its common origin, while nodes 3B and 3C have 1 as common origin.
In the extensive form of figure 7, nodes 3A and 3B have node 1P as its common
origin.

As we could see in figure 12, the fact that an action is played2 or not in
an information set like the one for player 2, regarding beliefs of player 3 on
his information set, is irrelevant for the purposes of our refinement. We then
approach a series of definitions that will help us deal with such actions.

2When we say that an action is played or assigned positive probability under a profile,
we are meaning that the behavior strategy derived from the strategy profile assigns positive
probability to the action. A similar notion is intented when we say that an action happens
with zero probability under a profile. This is regardless of whether the action is isolated from
the equilibrium path.
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Definition 5.3. We say that nodes Nk and Nl form a bridge [with routing
action a] for nodes Ni and Nj if:

i) Nk and Nl belong to the same information set.

ii) Nk and Nl are (without loss of generality) predecessors to Ni and Nj ,
respectively.

iii) The same action a advances to the respective nodes from the predecessors3.

Example 5.4. In the game section shown in figure 12, nodes 2A and 2B form
a bridge for nodes 3i and 3ii.

Example 5.5. In the game shown in extensive form in figure 9, nodes 2α and
2β do not form a bridge for nodes 3i and 3ii, since different actions (a and b) go
down the path to such nodes.

If nodes Nk and Nl form a bridge for nodes Ni and Nj with routing action
a, we say that under some game profile

〈(
σh

)N

h=1

〉
the bridge is:

• open, if action a is never played under the profile.

• closed, if action a carries positive probability under the profile.

Definition 5.6. a relevant action from node O to a successor node Ni (in
regard to another node Nj) is an action that takes place in the path from O to
Ni (that is, an action going from O or a successor of O, to Ni or a predeccessor
of Ni) and is not a routing action for a bridge between Ni and Nj .

In other words, a relevant action happens on the path from O to Ni, and
there is no homologous action happening on Nj ’s path from the origin.

Example 5.7. In figure 9, b is a relevant action from 1 to 3i, in regard to 3ii.

Example 5.8. In figure 12, b is not a relevant action from 1 to 3i, in regard
to 3ii: an homologous action b happens between 2B and 3ii. Action B, on the
other hand, is a relevant action from 1 to 3ii in regard to 3i.

Definition 5.9. Under a game profile
〈(

σh
)N

h=1

〉
a detour from node O to

node Ni (in regard to node Nj) is a relevant action ai from node O to node Ni

(in regard to node Nj) that is assigned under
〈(

σh
)N

h=1

〉
zero probability.

3That is to say, if action a advances in the path to Ni from Nk, then the homologous
action goes from Nl to Nj or an predecessor of Nj .
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Example 5.10. Consider the game given in extensive form in figure 9. Under
the mixed BNE ⟨(0, 0, 1) , (q, 1 − q) , (r, 1 − r)⟩ with q = r = 1/2, in which both
agent 2 and 3 equally ramdomize between their two strategies, α is a detour
from root to 3i in regard to 3ii, and β is a detour from 1 to 3ii in regard to
3i. Under the (pure) BNE ⟨(0, 0, 1) , (0, 1) , (0, 1)⟩, action a is a detour from the
root node to 3ii in regard to 3i: a is a relevant action that agent 2 never plays
following his strategy under this equilibrium profile.

We now finish this section with the following tools:

Definition 5.11. With Nk a predecessor to node Ni, and the play profile〈(
σh

)N

h=1

〉
, the probability weight function

p
(

Ni, Nk,
〈(

σh
)N

h=1

〉)
(1)

is given by the product of the weights or probabilities of each action in the path
from Nk to Ni, given by the profile.

Example 5.12. As can be deduced with the help of figure 2, under the BNE
⟨EA, A⟩ in the entry game, we have

p (2F , 1, ⟨EA, A⟩) = 0 (2)

and

p (2A, 1, ⟨EA, A⟩) = 1 (3)

Example 5.13. From the fragment of extensive form shown in figure 12, it is
apparent that under the equilibrium profile

p (2B , 1, ⟨(3/4, 1/4) , (1, 0) , . . .⟩) = 1/4 (4)

and

p (3ii, 1, ⟨(3/4, 1/4) , (1, 0) , . . .⟩) = 0 (5)

When comparing the respective weights for a pair of nodes that have a
shared open bridge, it will be convenient to have a modified version of the
weight function that would determine the relative weights the nodes would have
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were the routing action played. To this end, we define a modified version of the
precedent function:

Definition 5.14. With Nk a predecessor to node Ni, and the play profile〈(
σh

)N

h=1

〉
, in regard to another node Nj , considering that

p
(

Ni, Nk,
〈(

σh
)N

h=1

〉)
=

g∏
l=1

σl (al) (6)

. . . where a1, a2 . . . ag are the successive actions taken in the path from Nk to
Ni, and σl (al) is the probability or weight given to action al under the behavior
strategy equivalent to the strategy profile

〈(
σh

)N

h=1

〉
, the probability bridge-

adjusted weight function is given by

p̃
(

Ni, Nk,
〈(

σh
)N

h=1

〉
, Nj

)
=

g∏
l=1

σ̃l (al) (7)

. . . where σ̃l (al) is given by σl (al), unless action al is the routing action for an
open bridge between Ni and Nj , in which case we set σ̃l (al) = 1.

Example 5.15. In the game for which a fragment is shown in figure 12

p (3ii, 1, ⟨(3/4, 1/4) , (1, 0) , . . .⟩) = 0 as in (5) (8)

but

p̃ (3ii, 1, ⟨(3/4, 1/4) , (1, 0) , . . .⟩ , 3i) = 1/4 (9)

Notice that

p̃ (3ii, 1, ⟨(3/4, 1/4) , (1, 0) , . . .⟩ , 3i)
p̃ (3i, 1, ⟨(3/4, 1/4) , (1, 0) , . . .⟩ , 3ii)

=
1/4
3/4

= 1
3 (10)

. . . which is precisely the ratio of probabilities one would obtain in a consistent
belief under a SE for this game.

5.2 Principles for robustness

As commented above, our aim is to develop an equilibrium refinement that re-
stricts beliefs to fulfill some logical requirements. Thus, we propose the following
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Proposition 5.1. The sought refinement must satisfy the following proposi-
tions:

a) It must follow gameplay whenever possible.

b) It must use Bayes’ rule whenever it is admissible.

c) When comparing belief probabilities for two nodes of an information set
off equilibrium path, we must assume that somehow the common origin
of those nodes is reached. If admissible, Bayes’ rule must be taken into
account for play past the common origin.

d) The effect of open bridges on reasonable beliefs must be taken into account,
as explained when we analyze the fragment of tree in figure 12.

5.3 Classification of nodes

5.3.1 Some technical results

Based on the previous discussion, we are now fitted for the task of developing
the sought refinement. First, we will define some useful relationships between
nodes:

Definition 5.16. Let Ni and Nj be two nodes in the extensive form of a game.
Let O = O (Ni, Nj) be its common origin.

We say that Ni is isolated from Nj (under a game profile
〈(

σh
)N

h=1

〉
) if

there is a detour from O to Ni in regard to Nj .

Example 5.17. According to the fragment of game shown in figure 11, neither
node 21 is isolated from 22, nor 22 is isolated from 21. This is true for any pos-
sible game profile, since any such profile has Nature actions θ1 and θ1 assigned
positive probabilities.

Example 5.18. In the extensive form of the entry game given in figure 5, node
1′

A is isolated from node 1′
P under pure profiles ⟨NF, F ⟩ and ⟨NA, F ⟩, but not

under ⟨EA, A⟩.

Notice that some of the developed concepts depend only on the tree structure
(common origin, bridge) and some others also depend on the strategy profile
taken in reference (detours, isolation, etc.).

Definition 5.19. Let us consider two nodes Ni and Nj with common origin O.
We will say that, under certain strategy profile

〈(
σh

)N

h=1

〉
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• Ni is dominated by Nj , which we will write Ni ≪ Nj , if Ni is isolated
from Nj but Nj is not isolated from Ni. We will also say in this case that
Nj dominates Ni, or Nj ≫ Ni.

• Ni is uncoupled from Nj , which we will write Ni ∥ Nj , if Ni is isolated
from Nj and Nj is isolated from Ni.

• Ni is proportional to Nj , which we will write Ni ∝ Nj , if neither Ni

is isolated from Nj nor Nj is isolated from Ni.

Example 5.20. Consider the entry game described under the extensive form
of figure 1. Under equilibrium profile ⟨NF, F ⟩, we have 2A ≪ 2F . In the other
two pure profiles ⟨NA, F ⟩ and ⟨EA, A⟩, we have 2A ≫ 2F .

Under any mixed equilibrium profile for this game, we have 2A ∝ 2F .

Lemma 5.2 (Completeness). Let Ni and Nj be two nodes. Then, either Ni ∥
Nj, or Ni ∝ Nj, or Ni ≪ Nj, or Ni ≫ Nj.

Proof. Trivial, for the isolated and not isolated characters are mutually exclu-
sive, and the definitions from 5.19 cover all possible cases.

Lemma 5.3 (Proportionality factor). Let Ni and Nj be two nodes. Let O =
O (Ni, Nj) its common origin. If under certain profile

〈(
σh

)N

h=1

〉
, Ni ∝ Nj,

then the adjusted weights

p̃
(

Ni, O,
〈(

σh
)N

h=1

〉
, Nj

)
(11)

and

p̃
(

Nj , O,
〈(

σh
)N

h=1

〉
, Ni

)
(12)

are always greater than zero.

Proof. None of these 2 values could be zero, because in that case we would
have one node isolated from the other, which would contradict the fact that
Ni ∝ Nj .

Corollary. For any pair of nodes Ni, Nj such that under certain profile
〈(

σh
)N

h=1

〉
,
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Ni ∝ Nj, the ratios

κi,j =
p̃

(
Ni, O (Ni, Nj) ,

〈(
σh

)N

h=1

〉
, Nj

)
p̃

(
Nj , O (Ni, Nj) ,

〈
(σh)N

h=1

〉
, Ni

) (13)

and its reciprocal

κj,i =
p̃

(
Nj , O (Ni, Nj) ,

〈(
σh

)N

h=1

〉
, Ni

)
p̃

(
Ni, O (Ni, Nj) ,

〈
(σh)N

h=1

〉
, Nj

) (14)

are always well-defined.

Lemma 5.4. Let Ni, Nj and Nk three nodes. Let Om = O (Ni, Nj) and On =
O (Nj , Nk) be the indicated common origins. Then, either Om is predecessor to
On, or On is predecessor to Om, or Om = On. Furthermore, O (Ni, Nk) is Om

or On.

Om

Ni Nj Nk

On Om

NjNi Nk

Figure 13: Schematic forms of the cases indicated in lemma 5.4.

Proof. By definition, both Om amd On are predecessors to Nj . By the structure
of the extensive form of the game, Om and On must comply with the first part
of the thesis, that is, one must be the predecessor of the other, if not the same
node.

Now, let Oo = O (Ni, Nk). If Om ̸= On, let us assume without loss of
generality that On precedes Om. Then, it must be Oo = On. This can be seen
easily with the help of figure 13. A similar idea applies to the case On = Om.

Lemma 5.5. Fixed a certain strategy profile, being ≪, ∝ and ∥ binary relations
over nodes of a game tree, we have:



26

i) ≪ is an asymmetric, irreflexive relation: for every pair of nodes Ni and
Nj, ¬ (Ni ≪ Ni) and Ni ≪ Nj =⇒ ¬ (Nj ≪ Ni).

ii) ∝ and ∥ are reflexive, symmetric relations: for every pair of nodes Ni and
Nj, Ni ∝ Ni ∧ Ni ∥ Ni; Ni ∝ Nj =⇒ Nj ∝ Ni; and Ni ∥ Nj =⇒ Nj ∥
Ni.

Proof. Trivial.

Theorem 5.6 (Transitivity). Let Ni, Nj and Nk three nodes of the game tree.
Then,

i) Ni ≪ Nj ∧ Nj ≪ Nk =⇒ Ni ≪ Nk [TRANS1].

ii) Ni ∝ Nj ∧ Nj ∝ Nk =⇒ Ni ∝ Nk [TRANS2].

Proof.

I) Ni ≪ Nj ∧ Nj ≪ Nk =⇒ Ni ≪ Nk

a) Suppose Oo = On, predecessor to Om. That’s exactly the case de-
scribed in the left part of figure 13.
Since Nj ≪ Nk, there exists a detour from On to Nj in regard to Nk.
Were this action in the path from On to Om, then cleary Ni would be
isolated from Nk. But if this action comes from a node between Om

and Nj , since Nj is not isolated from Ni, this action must come from
a bridge between Ni and Nj . But this bridge cannot be extended to
Nk, or the action would not be the supposed detour. Summing up,
Ni must be isolated from Nk.
On the other hand, if any action is played with zero probability be-
tween On and Nk, the fact that Nj ≪ Nk forces that action to be
a routing action of a bridge between Nj and Nk. In every possible
case that action must also be included in a bridge that makes it not
a detour of Ni in regard to Nk. Thus, Nk cannot be isolated from
Ni.

b) Now, let us suppose Om = Oo and Oo is predecessor to On.
In this case, since Nj ≪ Nk, there exists a detour to Nj in regard
to Nk. This action must take place between On and Nj . Since
Nj cannot be isolated from Ni, this must be a routing action in an
open bridge between Ni and Nj , which cannot be extended to Nk by
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hypothesis (the action is a detour in regard to Nk). Thus, again we
deduce Ni is isolated from Nk.
On the other hand, if any action is played with zero probability in
the path from Om to Nk, neither could it be played from Om to Ni

[since Ni ≪ Nj ]. Thus, Nk cannot be isolated from Ni.

c) Finally, if Om = Oo = On, the fact that Nj ≪ Nk implies that there
is a detour from Oo to Nj in regard to Nk, an action that also cannot
be played in the path from Oo to Ni, since Ni ≪ Nj . Thus, Ni must
be isolated from Nk.
On the other hand, if there is some action not played in the path
from Ao to Nk, it also cannot be played in the way from Ao to Ni,
since Nj ≪ Nk and Ni ≪ Nj . Thus, Nk cannot be isolated from Ni.

II) Ni ∝ Nj ∧ Nj ∝ Nk =⇒ Ni ∝ Nk

This second part of the proof is similar to the previous discussion; we only
must show here that the hypotheses imply that neither Ni is isolated from
Nk, nor the other way around.

1

N

A

2A 2B

0.6

0.4

3A 3B

c c
d d

3C

B

Figure 14: Part of a game tree that shows an example of violation of transitivity
by ∥.

Notice that the relation ∥ does not have to fulfill transitivity, as the example
of figure 14 shows: in that game, agent 1 plays A, Nature mixes between two
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alternatives and agent 2 plays action c in his information set. We have 3A ∥ 3C

and 3C ∥ 3B . However, ¬ (3A ∥ 3B); rather 3A ∝ 3B .

Corollary. The relation ≪ [and ≫] constitute strict partial orders. The rela-
tion ∝ constitutes an equivalence.

Theorem 5.7 (Absorption). Let Ni, Nj and Nk three nodes of an extensive
form of a game. Then:

i) Ni ∝ Nj ∧ Nj ≪ Nk =⇒ Ni ≪ Nk [ABS1].

ii) Ni ≪ Nj ∧ Nj ∝ Nk =⇒ Ni ≪ Nk [ABS2].

iii) Ni ∝ Nj ∧ Nj ∥ Nk =⇒ Ni ∥ Nk. [ABS3].

Proof.

i) Let Om = O (Ni, Nj), On = O (Nj , Nk), and Oo = O (Ni, Nk) the respec-
tive common origins.

Again, by 5.4, either Oo = Om = On or Oo ∈ {Om, On}. We will approach
each case separately.

a) Let Oo = On, predecessor to Om, as in the left part of figure 13.
Clearly, Nj ≪ Nk implies there is a detour from On to Nj in regard
to Nk. Were that action in the path from Oo = On to Om, then it
clearly will be a detour from Oo to Ni. On the contrary, if this action
takes place in the path from Om to Nj , the fact that Nj ∝ Ni would
also imply that it must be present in an open bridge between Ni and
Nj .
Either way, we have that Ni must be isolated from Nk.
Now, suppose there is an action that is played with zero probability
in the path from On to Nk. Since Nj ≪ Nk, this must be a routing
action in a bridge between Nj and Nk. If the homologous action
takes place in the way from On to Om, this open bridge constitutes
also a bridge between Ni and Nk. Were that homologous action in
the way from Om to Nj , then the bridge must be extended to an
homologous action between Om and Ni, since Nj ∝ Ni. Either way,
Nk cannot be isolated from Ni.
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b) Let now Oo = Om, predecessor to On.
Since Nj ≪ Nk, there must be a detour from On to Nj . This action
must be a routing action of an open bridge between Nj and Ni, since
Nj ∝ Ni, so there is a homologous action in the path from Om to Ni

that is played with zero probability, and Ni is isolated from Nk.
On the other hand, let us suppose that there is an action that is
played with zero probability in the path from Om to Nk. If this
action happens between Om and On, then it must be the routing
action of a bridge between Ni and Nj , as Ni ∝ Nj . Now, if this
action happens between On and Nj , it must be the routing action of
a bridge between Nk and Nj (since Nj ≪ Nk), and this bridge must
be extended to Ni (since Nj ∝ Ni). Thus, Nk cannot be isolated
from Ni.

c) Finally, let us consider the case Oo = Om = On. This case is the
shown in the right part of figure 13.
The fact that Nj ≪ Nk implies that there is a detour from Oo to Nj

in regard to Nk. since Ni ∝ Nj , there must be a homologous action
in the path from Oo to Ni that constitutes a detour from Oo to Ni

in regard to Nk. Thus, Ni must be isolated from Nk.
Now, if an action in the way from Oo to Nk is played with zero
probability, it must be a routing action to a bridge between Nj and
Nk, since Nj ≪ Nk. But this bridge must also be extended to Ni,
since otherwise there would be a detour to Nj in regard to Ni, which
would violate Ni ∝ Nj . Thus, Nk cannot be isolated from Ni.

ii) Secondly, [ABS2] is proved following a similar argument to the preceding.
One must show that Ni must be isolated from Nk, and that Nk cannot be
isolated from Ni, using the fact that Ni ≪ Nj and Nj ∝ Nk.

iii) Finally, to show that Ni ∝ Nj ∧ Nj ∥ Nk =⇒ Ni ∥ Nk, we will use both
preceding results in a proof by contradiction.

Let us suppose that ¬ (Ni ∥ Nk). Then, by lemma 5.2, either Ni ∝ Nk,
Ni ≪ Nk, or Ni ≫ Nk.

a) Suppose Ni ∝ Nk. Then, Nk ∝ Ni and Ni ∝ Nj implies by transi-
tivity (theorem 5.6) that Nk ∝ Nj , contradicting Nj ∥ Nk.
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b) Suppose now Ni ≪ Nk. Since Nj ∝ Ni, this would imply by [ABS1]
that Nj ≪ Nk, again contradicting Nj ∥ Nk.

c) Finally, suppose Ni ≫ Nk. Then, Nk ≪ Ni and Ni ∝ Nj imply by
[ABS2] that Nk ≪ Nj , contradicting Nj ∥ Nk again.

We could conclude then that Ni ∥ Nk must hold.

5.3.2 Applications to nodes of an information set

The preceding results can be applied to any set of nodes. In particular, taking
into account our aims, it will be productive to apply those to the nodes in an
information set.

In the following, let M = {N1, N2, . . . Nl} be the (finite) set of l nodes in
an information set of a game in extensive form, with4 l > 1. We will assume
certain strategy profile5

〈(
σh

)N

h=1

〉
.

Definition 5.21. Let Mundom be the set of maximal elements for ≫, that is,
the set of nodes {Ng ∈ M |∄Ni ∈ M, Ni ≫ Ng}. We call this the set of undom-
inated nodes of M .

Let Mdom = M \ Mundom. We call the elements of Mdom the dominated
nodes of M .

Lemma 5.8. For any non-empty6 set M , Mundom is non-empty.

Proof. The lemma is trivial for a singleton. If M has more than one element,
the result follows from completeness [lemma 5.2] and the asymmetric character
of ≪ [lemma 5.5].

Example 5.22. Consider the extensive form for the entry game in figure 1. If
M = {2F , 2A}, the information set for agent 2 in this extensive form, then:

• Under the pure equilibrium profiles ⟨EA, A⟩ and ⟨NA, F ⟩, Mundom =
{2A}.

• Under the pure equilibrium profile ⟨NF, F ⟩, Mundom = {2F }.
4From our perspective, information sets that are singletons are completely trivial.
5It is apparent that the classification of nodes depend on the played profile; in other

words, whether a node dominates another, or is uncoupled from another one is dependent on
the considered game play.

6We were actually focused on the case #M > 1, but this result is particularly also true for
singletons.
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• Under any other (mixed) equilibrium profile, Mundom = {2F , 2A} = M .
Thus, in this case Mdom = ∅.

Example 5.23. Let M = {3i, 3ii} the nodes in the information set of agent 3
in the game of figure 9. Under any BNE, 3i ∥ 3ii; thus, Mundom = M for any
profile.

Theorem 5.9. Assume certain strategy profile. Then:

A) M , Mundom and Mdom can be partitioned into equivalence classes accord-
ing to ∝, such that for every pair of nodes Ni, Nj that belong to the same
class, one has Ni ∝ Nj.

B) In the preceding partition fo M , no class has elements of both Mundom and
Mdom.

Proof. Trivial. Partition in equivalence classes follows from the fact that ∝ is
an equivalence. The fact that no class could have elements of both Mundom and
Mdom is derived from the transitivity of ∝ and the exclusive character of ∝ and
≪.

Definition 5.24. Let M be an information set. Fixing a certain strategy profile〈(
σh

)N

h=1

〉
, let us consider Mundom as above.

If Mundom has only one equivalence class by ∝, then we say that M is
trivial7 [under

〈(
σh

)N

h=1

〉
]. Otherwise, we say that M is non-trivial [under〈(

σh
)N

h=1

〉
].

Example 5.25. Let M be the information set of player 2 in the extensive form
in figure 1. Here, M is trivial for any equilibrium profile: under any pure BNE,
Mundom is a singleton. Under any other (mixed) equilibrium, Mundom = M ,
and 2F ∝ 2A.

Example 5.26. The information set for agent 2 in the game partly shown in
figure 11 is trivial for any possible strategy profile: we have 21 ∝ 22 by force.

Example 5.27. In the game described in extensive form in figure 6, the profile
⟨EA, A, •⟩ generates a non-trivial information set for agent 3. Here, 3A ≪ 3B

and 3B ∥ 3C .
7The logic of this terminology will be clearer with the subsequent discussion.



32

Definition 5.28. Let M be some non-trivial information set under a profile〈(
σh

)N

h=1

〉
.

Let C1, C2, . . . Cp ⊆ Mundom the equivalence classes of Mundom under ∝.
Notice that it is always possible8 to pick a set of p representative nodes N1 ∈
C1, N2 ∈ C2, . . . Np ∈ Cp. Indeed, we are able to perform this selection for any
non-trivial information set M .

Considering such selection, we will call N1, N2, . . . Np the free nodes of M

[under
〈(

σh
)N

h=1

〉
].

Example 5.29. Following example 5.27, 3B and 3C can be taken to be the free
nodes of agent 3’s information set.

Free nodes are a relevant issue for non-trivial information sets. These only
happen off profile gameplay, as the next result shows.

Theorem 5.10. Let
〈(

σh
)N

h=1

〉
be certain strategy profile [most of the times

we will use this result with equilibrium profiles]. If the information set M is on
profile gameplay [on equilibrium path, if the profile is an equilibrium], that is, if
under the profile any node of M is reached with positive probability, then M is
trivial.

Proof. Suppose the information set M = {N1, N2, . . . Nl} is on profile gameplay.
Then, at least one node Nk of M is reached with positive probability. The path
that goes from the root node to Nk does not have an action with null weight.
Any node of M which is not reached with positive probability must then be
dominated by Nk. We show now that every node of M that is played with
positive probability belongs to the same equivalence class under ∝ of Nk. This
is indeed the case. Supose Nj is also reached with positive probability. Then,
any action in the path from the root node to Nj is played with positive weight.
That means that Nk ∝ Nj , since there is no detour possible for any other
relation between nodes.

5.4 Robust beliefs

Definition 5.30. Let us fix a profile
〈(

σh
)N

h=1

〉
. Let M be an information set

of the game, with nodes N1, . . . Nl. A belief set for M is an l-uple (µ1, µ2, . . . µl).
We say that the belief set (µi)l

i=1 is robust if:
8Indeed, since every M is finite, we do not even have to resort to the axiom of choice to

guarantee that.
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I)
∑l

i=1 µi = 1 [trivial requirement].

II) ∀i, µi ≥ 0 [trivial requirement].

III) Nh ∈ Mdom =⇒ µh = 0 [dominance requirement].

IV) Ni ∝ Nj =⇒ µi = κi,jµj with κi,j as in (13) [proportionality require-
ment9].

Example 5.31. In the entry game shown in extensive form in figure 1, the
assessment formed by the profile ⟨NA, F ⟩ together with beliefs given by µ2F

=
q, µ2A

= 1 − q with q ≥ 2/3 constitutes a PBE, as was discussed in §3.5.3.
In this case, the belief set for agent 2 in his information set is not robust:

as implied in example 5.22, 2F ≪ 2A, so under robust beliefs, condition III)
demands µ2F

= 0.

Robust belief sets have constrains regarding proportional and dominated
nodes. They have free hand for fixing beliefs for free nodes.

Lemma 5.11. Let
〈(

σh
)N

h=1

〉
be a strategy profile. Let M = {N1, N2, . . . Nl}

be an information set. Consider two robust belief sets

µ = (µ1, µ2, . . . µl) (15)

and

ν = (ν1, ν2, . . . νl) (16)

for M . Then, µ and ν must assign the same probabilities to dominated nodes
[zero]. Furthermore, if nodes Ni and Nj fulfill Ni ∝ Nj, then µi = κi,jµj and
νi = κi,jνj.

Proof. Trivial.

Example 5.32. For the information set 3 in figure 14, any belief set satisfying

µ3A
· 0.4 = µ3B

· 0.6 (17)

µ3A
+ µ3B

+ µ3C
= 1 (18)

will be robust.
9If both µi ̸= 0, µj ̸= 0, IV) could also be written in the more natural form µi

µj
= κi,j .

This presentation allows for null belief values for such nodes.
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Now, we present an important characterization of such robust beliefs in the
spirit of conistency and perturbations:

Theorem 5.12. Let Γ be certain game; and
〈(

σh
)N

h=1

〉
be certain strategy pro-

file of a game. Let M be an information set of the game, with nodes N1, . . . Nl.
Let us consider belief sets (µ1, µ2, . . . µl) for M .

I) Suppose
{〈(

σh
n

)N

h=1

〉}∞

n=1
is a sequence of totally mixed strategy pro-

files (we could also speak of the equivalent behavior strategies) that has〈(
σh

)N

h=1

〉
as limit. Let (µ1n, µ2n, . . . µln) be the belief set for M for each

term of the sequence, that is derived according to Bayes’ rule [this set is
unique for each term of the sequence, since each profile is totally mixed].
If

µ = (µ1, µ2, . . . µl) = lim
n→∞

(µ1n, µ2n, . . . µln) (19)

then (µ1, µ2, . . . µl) form a robust set of beliefs.

II) Let (µ1, µ2, . . . µl) be a robust set of beliefs for M . Then, there exists
a sequence of totally mixed strategy profiles

{〈(
σh

n

)N

h=1

〉}∞

n=1
with belief

sets for M (µ1n, µ2n, . . . µln) derived from Bayes’ rule for each term of
the sequence, such that:

• lim
n→∞

{〈(
σh

n

)N

h=1

〉}
n

=
〈(

σh
)N

h=1

〉
.

• lim
n→∞

(µ1n, µ2n, . . . µln) = (µ1, µ2, . . . µl)

Sketch of proof.
Part I) is rather trivial. Let O = O (N1, . . . Nl). It is easy to see that for

any term of the sequence, and any pair of nodes Ni, Nj :

µi

µj
= κi,j . (20)

If Ni ∈ Mdom and Nj ∈ Mundom, such κi,j tends to zero as n → ∞. That implies
that for any dominated node Ni, we must have µi = 0. A similar argument can
be used for the case of proportional undominated relations.

Part II) can be sketched in the following way: firstly, we may limit ourselves
to consider perturbartions of the form at

nbt
for detours.

Now, let MF the set of free nodes, as defined above. We only have to show
that it is always possible to find a family of perturbations for a certain set of
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belief values for the selected free nodes, since proportionality and dominance
constrains will follow, because according to I) any family of perturbations gen-
erate robust belief sets in the limit.

To show the required condition, it suffices to consider that MF consists of
nodes uncoupled with one another. Thus, we will be able to set aside one action
for each node in MF such that the corresponding beliefs are set. One must
be specially careful with the case of a free node that must be assigned zero
probability in the belief set.

Example 5.33. Taking up the extensive form from example 5.29, under the
(equilibrium) profile ⟨EA, A, T ⟩, we have MF = {3B , 3C}.

Thus, according to the definition of robust beliefs [→ definition 5.30], any
belief set (µ3A

, µ3B
, µ3C

) with µ3A
= 0 will be robust.

It can be seen that any such belief set can be dealt with employing perturba-
tions for actions F [from 2A to 3B ] and N [from 1 to 3C ]. For instance, pertur-
bations ϕF = 1

n2 , ϕN = 1
n work for (µ3A

, µ3B
, µ3C

) = (0, 0, 1); ϕF = 1
n , ϕN = 1

n2

avail us to deal with (µ3A
, µ3B

, µ3C
) = (0, 1, 0); and ϕF = a

n , ϕN = b
n can deal

with any belief set (µ3A
, µ3B

, µ3C
) = (0, a, b) for a > 0, b > 0.

Example 5.34. For the entry game shown in extensive form in figure 1, under
the (mixed) profile ⟨(p, 1 − p, 0, 0) , (q, 1 − q)⟩, the only robust set of beliefs for
agent 2 in his information set is given by (µ2F

, µ2A
) = (p, 1 − p).

5.5 Robust equilibrium

Having defined robust beliefs, we develop the corresponding refinement we were
looking for.

Definition 5.35. A robust equilibrium is an assessment
(〈(

σh
)N

h=1

〉
, (µg)

)
such that:

A)
〈(

σh
)N

h=1

〉
constitutes a BNE for the game.

B) At each information set, the corresponding agent maximizes payoffs ac-
cording to the beliefs of the assessment.

C) Each belief set of the system of beliefs (that is, each component of (µg),
one for each information set) is robust.

This refinement satisfies precisely the properties demanded in 5.1.
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5.6 Relationship between concepts

We finish the section with these final results, that round up the idea mentioned
in the introductory part, that of finding a middle ground between PBE and SE.

Thus, we show that the RE is precisely a refinement of PBE and a general-
ization of SE.

Lemma 5.13. Let
〈(

σh
)N

h=1

〉
be an equilibrium profile. Suppose that the as-

sessment
(〈(

σh
)N

h=1

〉
, (µg)

)
is a robust equilibrium. Then, it is also a PBE.

Proof. A RE automatically complies with the restrictions of a PBE regarding
sequential rationality. A PBE does not impose restrictions in information sets
off equilibrium path. We just have to check that Bayes’ rule is applied over
information sets on equilibrium path. But this is indeed the case, as theorem
5.10 implies.

Theorem 5.14. Let the assessment
(〈(

σh
)N

h=1

〉
, (µg)

)
be a SE. Then, it is

also a RE.

Proof. An assessment is a SE only if it is a BNE that satisfies sequential ratio-
nality and there is a sequence

{〈(
σh

n

)N

h=1

〉}∞

n=1
of completely mixed strategy

profiles converging to the said equilibrium profile
〈(

σh
)N

h=1

〉
, generating belief

systems constistent with Bayes’ rule use and also converging to belief system
(µg).

To show that such assessment is a RE, it only remains to show that such be-
lief system is formed by robust belief sets. But that is true, since we could use the
first part of theorem 5.12 applying the common mixing sequence

{〈(
σh

n

)N

h=1

〉}∞

n=1
to each information set.

6 Concluding remarks

6.1 Recap

We have developed an equilibrium concept that serves our purposes. It is suffi-
cient to discard problematic equilibria as the profile ⟨NA, F ⟩ of the entry game.

At the same time, this equilibrium refinement is less stringent on the belief
relationship betwen nodes.

Notice in particular that in the game described in extensive form in figure
9, any equilibrium profile has agent 1 playing γ with probability 1.
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Thus, we could fix any values to the beliefs of agent 2 and 3 and the corre-
sponding assessment will constitute a RE, if beliefs sustain sequential rationality.

One way of thinking about the robust equilibrium is considering it a re-
finement of PBE that fulfills the demanded principles given in proposition 5.1,
extending the use of Bayes’ rule whenever we could suppose a common node
has been reached.

The other is to consider it a generalization of SE, such that instead of re-
stricting the perturbations to be a uniform system for the entire tree, is allowing
different perturbations for every node. This could be reasonable, as the example
game of figure 9 shows. If agents 2 and 3 have (for instance, under the pure
BNE) differing beliefs about the arriving path to their respective information
sets, why not letting each agent see consistency of beliefs by means of different
mixing sequences?

6.2 Further work and extensions

We believe both RE and SE to be robust under equivalent game representa-
tions. To prove this, in the first place we need to formalize different game
representations in an abstract framework and show that for any equilibrium in
one representation, there is a homologous one in any other.

A very accessible future work is the representation of a RE as just a system
of equalities and inequalities: a set of restrictions for equilibrium play; another
one for sequential rationality; and finally, another one set of equalities for belief
robustness.

Finally, an interesting extension is the development of the relationship be-
tween SE and RE by means of similar equations and relations. Notice that in
the game shown in figure 9, there is plenty of room to fix beliefs for both infor-
mation sets of 2 and 3. To the quoted relations above-mentioned that define a
RE, we could add a relationship between beliefs over information set 2 and 3
such that we could check if a RE is also a SE.

Indeed, for that game if we consider for instance the pure RE, these rela-
tionships are given in the following: µ2α = 0 or µ3ii = 0.
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