
 1 

Counting and Accounting: Measuring the Effectiveness of Fiscal Policy in 
Multidimensional Poverty Reduction 

Maria Emma Santos1, Nora Lustig2, Maximiliano Miranda Zanetti3 
 
 

Abstract 
In this paper we propose indicators of impact and spending effectiveness of fiscal 
interventions for multidimensional poverty reduction. In the impact effectiveness indicator, 
the observed poverty reduction is compared against the optimal reduction that could have 
been achieved. In the spending effectiveness indicator, the observed spent budget is 
compared with the minimum budget that could have been spent to achieve the observed 
poverty reduction. We consider two alternative criteria to find the optimal allocation: one 
that prioritizes reducing poverty to the biggest number of people and another which 
prioritizes reducing poverty among the poorest poor. The proposed methodology can be 
implemented using cross-sectional household survey (or census) data, alongside 
information on the cost of removing each deprivation at the household level, and 
information on public spending. The methodology can be implemented ex-post, as an 
effectiveness assessment, as well as ex-ante, to guide a multidimensional poverty reduction 
program. 
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1 Introduction 

For over a decade now there has been a burst of measures of multidimensional poverty to 
reflect more accurately the complexity of the phenomenon, which includes but exceeds 
income poverty. The most popular approach to measuring multidimensional poverty so far 
is the so-called counting approach (Atkinson, 2003). The Oxford Poverty and Human 
Development Initiative (OPHI)’s methodology, developed by Alkire and Foster (2007, 2011), 
outstands as the counting approach with most widespread application. The Global 
Multidimensional Poverty Index (global MPI) designed by OPHI in collaboration with the 
United Nations Development Programme (UNDP) in 2010 for the 20th Anniversary of the 
Human Development Report (HDR) (Alkire and Santos, 2010, 2014; UNDP, 2010) has gained 
wide recognition as a relevant development metric, and it is regularly updated for over 100 
developing countries. Also, the Report of the Commission on Global Poverty (World Bank, 
2017) recommended a Multidimensional Poverty Index (MPI) as a complementary indicator 
to income poverty, and the Sustainable Development Goal (SDG) 1.2.2 focuses specifically 
on the reduction of multidimensional poverty, according to national definitions. At the time 
of writing this paper there were 24 countries with an official national MPI, eleven of them in 
Latin America. In most of its applications, multidimensional poverty measurement can be 
associated to the direct method to measure poverty (Sen, 1981), in that it evaluates 
whether people satisfy a set of specified basic needs, rights, or functionings. This contrasts 
with the income method, which determines whether people’s incomes fall below the 
poverty line (Alkire and Santos, 2014). 
 
Contemporaneously with the development of OPHI’s multidimensional poverty 
measurement methodology, the Commitment to Equity Institute (CEQ) developed a fiscal 
incidence analysis methodology in an internationally comparable way, in such a way that it 
can and has been implemented in over 60 countries so far. The methodology belongs to the 
so-called accounting approach. The methodology entails adding (benefits) and subtracting 
(taxes) amounts from the pre-fiscal income to obtain the post fiscal one. The difference in a 
poverty index computed over the pre-fiscal income and the one computed over the post-
fiscal one indicates whether the fiscal intervention is poverty-reducing or poverty-
increasing. This approach does not consider behavioral or general equilibrium modelling 
(Lustig, 2018, p. 18).  
 
In an international development agenda in which reducing multidimensional poverty is an 
explicit priority, one natural question that emerges is -just like with income poverty- what is 
the impact of the fiscal interventions over multidimensional poverty? After more than a 
decade of methodological developments from both CEQ and OPHI -both institutions with 
high policy impact, in this paper we bring together OPHI’s counting methodology of 
multidimensional poverty measurement with CEQ’s accounting methodology of fiscal 
incidence analysis.  
 
As a relevant previous related work, there is the study by Cuesta et al (2021), in which the 
authors perform a fiscal incidence analysis using CEQ’s methodology for the case of Uganda 
using a multidimensional child poverty measure. They identify child-relevant budget and 
evaluate the incidence of such fiscal intervention stratifying the children by their 
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multidimensional poverty intensity. The approach followed in this paper is completely 
different. We intend to develop a methodology in which both sides of the analysis -not only 
the metric for evaluating fiscal incidence but also the fiscal intervention- are 
multidimensional. A related complementary work is that by Barbieri and Higgins (2015), 
who study with a political economy model how a multidimensional poverty measure can 
influence the allocation of resources across ministries. 
 
The methodology proposed in this paper includes three indicators. First, following Alkire et 
al (2015), we note that the in MPI’s censored headcount ratios, can be interpreted as the 
marginal dimensional contribution to changes in the multidimensional poverty measure. 
Whenever this change can be reasonably attributed to the fiscal action, this indicator can be 
interpreted as an analogue of CEQ’s Marginal Contribution Indicator in the multidimensional 
case. Second, we propose analogues of Enami (2018)’s impact and spending effectiveness 
indicators for the multidimensional poverty context. The impact effectiveness indicator is a 
tool for assessing how well has a certain budget been allocated to reduce multidimensional 
poverty, whereas the spending effectiveness indicator allows identifying the minimum 
budget that would have achieved the observed poverty reduction between two points in 
time. We consider two alternative criteria to define the optimal distribution, which emerge 
from the fact that deprivations are removed at the household level, but households have 
different sizes. One criterion prioritizes maximising the MPI reduction, the other prioritizes 
reducing the deprivations among the most intensely poor. When poverty is identified at the 
individual level or if household sizes are ignored, the two criteria coincide. The optimal 
distribution defined for evaluating ex-post the observed allocation of public budget can also 
be used prospectively as a policy tool for allocating budget.  
 
The paper is structured as follows. In Section 2 we introduce the general notational 
framework and the methodology for poverty measurement. Section 3 briefly presents CEQ’s 
indicators of marginal contribution, impact effectiveness and spending effectiveness. 
Section 4, contains the main value added of this paper, presenting the proposed indicators 
for fiscal incidence analysis in the multidimensional poverty context. Section 5 presents 
numerical examples to illustrate the methodology. Section 6 details how the methodology 
can be implemented with real data. Finally, Section 7 concludes.  
 

2 The Measurement Framework 

We present the notational framework, in line with Alkire and Foster’s (2011) (AF hereafter) 
notation. However, in this presentation we will make explicit the fact that the unit of 
identification is the household, as this will facilitate the presentation of the indicators 
proposed. Note however that the statistics are presented in terms of population. 
 
At each period of time 𝑡, there are	𝑖 = 1,… , 𝑛! people who live in ℎ = 1,… , 𝑇! households. 
The relevant information is contained in an 𝑇!𝑥𝑑 matrix 𝒙𝒕 = .𝑥#$!/ where each entry 𝑥#$! ∈
ℝ% is the achievement of household ℎ in indicator 𝑗 = 1,…𝑑, at time 𝑡 = 0,1. Each row 
vector 𝑥#! contains the achievements of household ℎ in each of the 𝑑 indicators at time 𝑡. 
Deprivation cutoffs are summarized in a 1𝑥𝑑 vector 𝑧 = .𝑧$/, and indicators’ weights in an 
1𝑥𝑑 vector	𝑤 = .𝑤$/, where ∑ 𝑤$ = 1&

$'( . We assume the 𝑧 and 𝑤 vectors to be time 
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invariant, that is, the minimum thresholds do not change over time, nor does the weight 
attached to each indicator. This assures consistency over time in the fiscal incidence 
analysis.  
 
In multidimensional poverty analysis, variables are typically of ordinal nature, and are then 
converted into a dichotomy of deprived and non-deprived. Household ℎ is identified as 
deprived in each 𝑗-indicator, in each 𝑡 period, whenever 𝑥#! < 𝑧$. The deprivation of 
household ℎ in indicator 𝑗 can be defined as 𝑔#$!) = 1 whenever 𝑥#$! 	< 	 𝑧$, and 𝑔#$!) = 0 
otherwise, and these are collected in an	𝑇!𝑥𝑑	 deprivation matrix 𝒈!) = .𝑔#$!) /. We refer to 
achievements that fall below their corresponding cutoff value as deprived achievements. 
Next, a deprivation score is computed for each household at each time, defined as the 
weighted sum of deprivations 𝑐#! = ∑ 𝑤$𝑔#$!)&

$'( , which can be collected in a 𝑇!𝑥1 vector of 
deprivation counts 𝑐!.  
 

2.1 Multidimensional Poverty Measures for ordinal variables 

Identification 

Poverty measurement first requires identifying the poor (Sen, 1976). In the AF framework 
identification is done comparing the deprivation score with a poverty cut-off 𝑘, which 
represents the proportion of minimum deprivations a household must experience to be 
identified as poor: household ℎ is poor when 𝑐# ≥ 𝑘, and it is non-poor when 𝑐# < 𝑘. The 
use of a set of deprivation cutoffs 𝑧 and a poverty cutoff	𝑘 is what makes the AF 
methodology a dual-cutoff approach. The use of the poverty cutoff also frames the AF 
methodology within counting approaches because the poor are identified by counting their 
deprivations, represented in the deprivation score 𝑐#.  
 
The poverty cutoff 𝑘 can take values within the range: min@𝑤$A ≤ 𝑘 ≤ 1, the lower bound 
corresponding to union criterion -anyone in a household with at least one deprivation will 
be counted as multidimensionally poor, and the upper bound corresponding to the 
intersection criterion -only those in households deprived in all considered indicators will be 
counted as multidimensionally poor. Most commonly, intermediate k values are used.  
 
Once the identification step has been completed, to proceed to the next step of 
aggregation, and to satisfy the poverty focus axiom, the deprivations of the non-poor need 
to be censored. The censored deprivation matrix is defined as 𝒈𝒕(𝒌)) = .𝑔#$!) (𝑘)/ such that 
each element is 𝑔#$!) (𝑘) = 𝑔#$!)  when 𝑐#! ≥ 𝑘 and	𝑔#$!) (𝑘) = 0 otherwise. The censored 
deprivation score is defined as 𝑐#!(𝑘) = ∑ 𝑤$𝑔#$!) (𝑘)&

$'( , and these scores are collected in 
the 𝑐!(𝑘) vector.  
 
Next, one can proceed with the second poverty measurement step, which is aggregation 
(Sen, 1976). Given that in multidimensional poverty measurement exercises the presence of 
dichotomous, ordinal, and categorical variables prevails, we focus here on the 𝑀) measure.  
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Aggregation with 𝑀) 

The 𝑀) measure (Alkire and Foster, 2011) has given the mathematical structure to the 
global MPI as well as to most national and regional MPIs. As we have defined deprivations in 
terms of households, to obtain the aggregate poverty measure in population terms, we 
need to consider the household size 𝑠#	of each ℎ = 1,… , 𝑇! household. 𝑀) is given by: 
 

𝑀𝑃𝐼! = 𝑀)!(𝒙𝒕; 𝑧) =
(
*!
∑ 𝑠# ∑ 𝑤$𝑔#$!) (𝑘) = (

*!
∑ 𝑠#𝑐#!(𝑘)
+!
#'(

&
$'(

+!
#'(   (1) 

 
If the 𝑀) measure is computed with household survey data, this typically includes a survey 
weight variable 𝑝#! that indicates how many households each ℎ household in the sample 
represents. Then, expression (1) would be: 
 

𝑀𝑃𝐼! = 𝑀)!(𝒙𝒕; 𝑧) =
(
*!
∑ 𝑠#𝑝#!𝑐#(𝑘)
+!
#'(      (1’) 

where ∑ 𝑠#𝑝#! = 𝑛!
+!
#'( . For simplicity, we ignore the survey weight variable, but all the 

formulas can incorporate it. 
 
It can be verified that 𝑀) is the product of two relevant sub-indices which provide distinct 
and complementary information: the headcount ratio of multidimensional poverty 𝐻, and 
the average intensity of poverty among the poor 𝐴. This is why 𝑀) is called the adjusted 
headcount ratio. 
 
The headcount ratio of multidimensional poverty can be expressed as: 
 

𝐻! =
(
*!
∑ 𝑠#𝐼(𝑐#! ≥ 𝑘)+!
#'( = ,!

*!
   (2) 

 
where 𝐼(𝑐#! ≥ 𝑘) is an indicator function that takes value 1 when the condition inside the 
parenthesis holds, and 0 otherwise, and 𝑞! is the number of the poor in period 𝑡. 
 
In turn, poverty intensity is the average deprivation score among the poor, which is defined 
as: 

𝐴! =
(
,!
.∑ 𝑠# ∑ 𝑤$𝑔#$!) (𝑘)&

$'(
+!
#'( / = (

,!
.∑ 𝑠#𝑐#!(𝑘)

+!
#'( /   (3) 

 
The 𝑀) measure is a member of a broader class of measures, the 𝑀-  class, but the other 
members of the family require all indicators to be cardinal and thus are not presented here. 
 
The 𝑀) measure satisfies several convenient properties that make it suitable for wide 
applicability. Four of such properties outstand. First, it satisfies ordinality: as achievements 
are dichotomized into ‘deprived’ and ‘non-deprived’, the poverty value does not change 
whenever the scaling of an ordinal variable changes. Second, 𝑀) satisfies dimensional 
monotonicity. Given two distributions A and B, with the same poverty headcount ratio, but 
B having higher poverty intensity than A, B will have an 𝑀) value higher than that of A. 
Third, 𝑀) satisfies population subgroup decomposability, which means that the overall 
poverty value can be expressed as a weighted sum of the poverty values of mutually 
exclusive and collectively exhaustive population subgroups 𝑝 = 1,… , 𝑃, such that 
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∑ 𝑛.! = 𝑛!
*"!
.'( , where the weights are the subgroups’ population shares 

*"!
*!

. Let 𝑀)
.(𝒙𝒕; 𝑧) 

be the poverty value of each subgroup 𝑝, then 𝑀) can be expressed as: 
 

𝑀)!(𝒙𝒕; 𝑧) = ∑ *"!
*!
𝑀)!
. (𝒙𝒕; 𝑧)/

0'(          (4) 

 
From there, one can compute the contribution of each 𝑝 subgroup to total poverty as:  

𝐶.! =
*"!
*!

1#!
" (𝒙𝒕;5)

1#!(𝒙𝒕;5)
       (5) 

This enables decompositions by gender, ethnicity, age groups or regions that are quite 
relevant for fiscal incidence analysis. 
 
Fourth, 𝑀) satisfies dimensional breakdown. This means that the overall poverty value can 
be expressed as a weighted sum of post-identification dimensional values, where the 
weights are the indicators’ weights. The expression is given by: 
 

𝑀)!(𝒙𝒕; 𝑧) = ∑ 𝑤$ Q
∑ 8%9%&!

# (:)'!
%()

*!
R&

$'(      (6) 

The expression in parenthesis in formula (6) is called the censored headcount ratio 𝐶𝐻$, 
defined as the proportion of the total population in households which have been identified 
as poor and are deprived in indicator 𝑗. In this way, one can compute the contribution of the 
deprivation in each indicator j to total poverty as:  
 

𝐶$! =
;&<∑ 8%9%&!

# (:)'!
%() *!= >

1#!(𝒙;5)
         (7) 

 
While the 𝑀) measure is very convenient for the four mentioned properties, it has one 
drawback, which is that it is not sensitive to inequality among the poor. Specifically, 𝑀) does 
not satisfy the strong rearrangement property, which requires poverty to increase 
whenever the concentration of deprivations among the poor increases.4 Moreover, 𝑀) 
could decrease if the rearrangement lifted households from poverty, while others (Rippin, 
2013, and Datt, 2019), would argue that it should always increase under these 
circumstances.  
 
However, the strong form of the rearrangement property is incompatible with the 
dimensional breakdown property, admittedly quite relevant for policy purposes (AF, 2016, 
2019).5 The 𝑀) measure has been extended to a distributional-sensitive measure: the 𝑀)

?, 
but at the cost of renouncing to dimensional break-down (Alkire and Foster, 2016; 2019). 
Barbieri and Higgins (2015) have emphasized the importance of the dimensional break-
down property from a political economy point of view. In this paper, we develop the 
methodology using the 𝑀) measure because it is the one with wide applicability at country 

 
4 For more comprehensive discussion on distributional properties see Seth and Santos (2019) and Santos 
(2023). 
5 Also, the requirement that poverty should increase under such transformation implicitly assumes 
achievements to be substitutes. However, the converse case in which achievements are complements and 
thus poverty should decrease under such transformation, has also been considered (Bourguignon and 
Chakravarty, 2003). 
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levels, and because sensitivity to the poorest poor can also be incorporated by using higher 
poverty cutoffs, as it is exemplified in Section 5. 
 

3 Three distinguished CEQ’s indicators 

CEQ’s fiscal incidence analysis relies on the computation of different income concepts. The 
pre-fiscal income concept is the market income, namely, wages and salaries, income from 
capital plus: private transfers, imputed rent and own production before: taxes, social 
security contributions and government transfers. Market income also includes contributory 
social-insurance old-age pensions whenever contributory pensions are treated as deferred 
income. From that income concept, different post-fiscal income concepts are constructed: 
disposable income, consumable income and final income (Lustig et al., 2018). 
 

The computation of the different income concepts is performed at one point in time. It is 
certainly the most challenging and core task of the fiscal incidence analysis. CEQ’s 
methodology most commonly needs to implement a variety of tools which combines direct 
identification (the survey tells) with inference, imputation, simulation, prediction or 
matching techniques to bring information from other data sources (Lustig et al., 2018, ch. 
6). Once the different income concepts have been defined, the CEQ methodology computes 
different indicators which allow answering key questions on the distributional impact of the 
fiscal system and of specific components. We consider here three of these indicators, of 
which we propose in Section 4 extensions to the multidimensional case. 
 

3.1 CEQ’s Marginal Contribution Indicator 
A fundamental indicator in CEQ’s framework is the marginal contribution of a specific tax or 
any combination of taxes (𝑇), or a specific transfer or combination of transfers (𝐵) to 
changes in the overall level of poverty or inequality. This indicator is given by the inequality 
or poverty indicator computed over the income distribution without the tax/es (𝑇) or 
transfer/s (𝐵) under analysis, minus the inequality or poverty indicator computed over the 
income distribution with the tax or transfer under analysis. 
 

𝑀𝐶+@0AB*&	D*E@FG = 𝐼𝑛𝑑𝑒𝑥B*&	D*E@FG	;H!#@I!	+@0	A − 𝐼𝑛𝑑𝑒𝑥B*&	D*E@FG (8) 
 
Whenever 𝑀𝐶+@0AB*&	D*E@FG > 0 the fiscal intervention is equalizing or poverty-reducing, and 
whenever 𝑀𝐶+@0AB*&	D*E@FG < 0, the fiscal intervention is unequalising or poverty-increasing 
(Lustig et al., 2018, p. 36-37). Naturally, taxes can only increase poverty. 
 

3.2 CEQ’s Impact Effectiveness Indicator 
The Impact Effectiveness (IE hereafter) indicator (Enami, 2018) intends to determine how 
effective taxes and government spending are in reducing inequality and poverty, that is 
whether a transfer generates as much reduction in poverty or inequality as it could 
potentially do given a certain budget. This indicator is defined as: 
 

𝐼𝐸 = 𝑶𝒃𝒔𝒆𝒓𝒗𝒆𝒅	1Q09H*QR	E@*!0HSI!H@*	@T	+	@0	A
𝑶𝒑𝒕𝒊𝒎𝒂𝒍		1Q09H*QR	E@*!0HSI!H@*	@T	+	@0	A

  (9) 
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The key element contained in this indicator is given by the allocation of taxes or benefits 
that produces the optimal distribution, which in turn produces the optimal contribution of 
that tax or benefit. Because taxes can only increase poverty, the poverty-reduction indicator 
is only defined for benefits and combined tax-transfer systems that have a positive marginal 
contribution (Enami, 2018). 
 
Consider the case of benefits. Given a certain total observed benefit allocated to the poor, 
the aim is to define an allocation such that it reduces poverty (or inequality) the most, and 
can thus be considered optimal. The optimal distribution is based on Fellman et al. (1999). 
The procedure is to order individuals from poorest to richest and increase the income of the 
poorest poor individual with a benefit until her income becomes equal to the income of the 
second poorest poor. Next, the incomes of both these two poorest poor are raised, through 
the benefit, to the income of the third poorest poor, and so on. In other words, the total 
budget is allocated among the poor in such a way that a certain number (say 𝐽) of the 
poorest poor receive each a certain amount of benefit such that all their incomes are 
equalized, preserving the original income ranking. Note that the cardinality and continuity of 
the income variable enables the total available budget to be divided into infinitesimal parts -
if necessary- to produce the optimal allocation, which reduces inequality among those who 
receive the benefit to zero and it is rank preserving. The interpretation of the IE indicator is 
straightforward: a value of 0.60 of the IE indicator means that the transfer has accomplished 
60% of its potential in reducing poverty. 
 

3.3 CEQ’s Spending Effectiveness Indicator 
A twin indicator of the Impact Effectiveness indicator is the Spending Effectiveness (SE 
hereafter) indicator. The aim of this indicator is to determine the lowest amount of benefit 
(or tax), with which the observed inequality or poverty reduction could have been achieved. 
The Spending Effectiveness indicator is given by: 
 

𝑆𝐸 = 𝑶𝒑𝒕𝒊𝒎𝒂𝒍	𝑨𝒎𝒐𝒖𝒏𝒕	@T	+	@0	A	!#Q!	QE#HG^G8	!#G	@S8G0^G&	1_
𝑶𝒃𝒔𝒆𝒓𝒗𝒆𝒅	𝑨𝒎𝒐𝒖𝒏𝒕	@T	+	@0	A

  (10) 

 
In this case the key element is to look for the optimal allocation of a benefit (or a tax) that 
will give the minimum amount of benefit (or tax) needed to achieve the observed reduction 
in poverty or inequality. The definition of the optimal allocation is exactly the same as the 
one described for the IE indicator. Note that the difference is that while in the IE indicator 
one looks for the biggest reduction in a poverty or inequality measure given a budget, in the 
SE indicator one looks for the smallest budget that would achieve the given reduction in 
poverty or inequality.  
 

4 Extending CEQ’s measures to the multidimensional context 

4.1 Specificities of the multidimensional context 
Extending CEQ’s framework of fiscal incidence analysis to the multidimensional case 
requires considering the specificities of the multidimensional context, which condition the 
way in which to think analogue indicators.  
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4.1.1 Defining the pre-fiscal distribution 

Defining a pre-fiscal matrix of achievements -an analogue of the pre-fiscal income- does not 
seem obvious. Fiscal interventions in the multidimensional space take the form of in-kind 
interventions, switching a deprived achievement into a non-deprived one, and thus they are 
not reflected into additions to a quantitative variable such as income.  
 
One practical way in which the pre-fiscal matrix of achievements can be inferred is by taking 
advantage of repeated cross-sectional household survey data. Given the matrix of 
achievements at two points in time 𝒙𝒕𝟎 = .𝑥#$!#/ and  𝒙𝒕𝟏 = .𝑥#$!)/, we may understand 
the 𝒙𝒕𝟎  matrix as the pre-fiscal matrix of achievements of the 𝒙𝒕𝟏matrix, the post-fiscal 
matrix of achievements. This could be done using panel data, but this is not a requirement 
for implementing the proposed methodology. 
 
Naturally, the plausibility of assuming the initial achievement matrix as the pre-fiscal matrix 
relies on the specific 𝑗 = 1,…𝑑 indicators that compose the matrix. They need to be 
indicators such that their change between 𝑡) and 𝑡( can only be reasonably attributed to the 
fiscal intervention of the State. Access to basic services, such as water, sanitation sewage, 
natural gas and electricity are natural options to consider.  
 

4.1.2 Joint deprivations 

The fact that multidimensional poverty looks at the joint distribution of deprivations brings 
complexities into the fiscal incidence analysis. Different combinations of deprivations may 
produce the same deprivation score, and reducing it may be achieved by lifting different 
combinations of deprivations which in turn imply different fiscal costs. Also, when an 
intermediate k-poverty cutoff is used, rather than a union one, the censored distribution of 
deprivations is used, which brings some technical difficulties that need to be considered in 
the search of the optimal distributions, as it will be explained below. 
 

4.1.3 Indivisibilities and Discontinuities 

The multidimensional context also has many indivisibilities which create discontinuities. The 
first indivisibility is given by the deprivation score 𝑐#. When 𝑤$ = 1/𝑑	∀𝑗, the deprivation 
score changes in steps of 1/𝑑	and - unlike $1- there is no way to divide those values, which 
represent having vs. not having a deprivation. Other weighting schemes have other steps, 
but still indivisible. Equalizing a certain group of deprivation scores among the poorest, 
analogously to CEQ’s IE and SE indicators, is less applicable than one could think a priori. 
Lifting a certain deprivation may reduce a household’s deprivation score in more or in less 
than one would need to equalize it to the score of other households, depending on the 
weights and the combination of deprivation this and other households have. 
 
The second indivisibility is given by the cost of removing each deprivation, typically 
expressed in a per household cost. In the income space, the fiscal effort is given by a certain 
budget that can be divided until the very last cent to be distributed across individuals so 
that incomes are equalized, generating the optimal distribution against which the actual 
distribution can be compared. In the multidimensional case, in contrast, the fiscal effort is 
also given by a certain spent budget, but this can only be discretely divided into -for 
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example- a certain number of ‘connections’ to public services such budget can achieve. 
Bringing water or sewage sanitation to a household has a certain cost, and such benefit 
cannot be delivered in parts. It is either given, and such deprivation is lifted, or not given. 
 
The third indivisibility comes from the fact that people cohabitate in households, which 
have different sizes which, again, are indivisible. Many of the deprivations considered in the 
multidimensional context, especially those related to services, are equally experienced by all 
household members. One cannot remove this kind of deprivations only to certain household 
members. It is precisely because of this indivisibility that we have explicitly incorporated in 
the notation the fact that households are the unit of identification. 
 
These three indivisibilities impose restrictions to defining the optimal allocation of a certain 
fiscal budget. 
 
4.2 A Marginal Contribution Indicator in the multidimensional case 
Suppose the matrix of achievements at two points in time: 𝒙𝒕𝟎  and 𝒙𝒕𝟏  and the 
corresponding values of the multidimensional poverty index 𝑀)!#(𝒙; 𝑧) and 𝑀)!)(𝒙; 𝑧). 
Interpreting matrix 𝒙𝒕𝟎  as the pre-fiscal distribution of 𝒙𝒕𝟏, a natural and simple way to think 
of an analogue of CEQ’s 𝑀𝐶 indicator of a certain benefit (or tax) is to think of a 
Dimensional Marginal Contribution indicator. This indicator would indicate to what extent 
the fiscal action in reducing deprivation in one dimension has contributed to the reduction 
in total multidimensional poverty.  
 
Following Alkire et al. (2015, chapter 9), given that the 𝑀) measure satisfies dimensional 
breakdown, marginal contributions can be directly equated to changes in the censored 
headcount ratios defined in equation (6) as a proportion of the total change in 𝑀). Changes 
in the censored headcount ratios are given by: 
 

∆𝐶𝐻$ =
∑ 8%9%&!)

# (:)
'!)
%()

*)
−

∑ 8%9%&!#
# (:)

'!#
%()

*#
   (11) 

 
It can also be verified that: 

∆𝑀),!#a!) = 𝑀)@𝑥!#A − 𝑀)@𝑥!)A = ∑ 𝑤$∆𝐶𝐻$&
$'(   (12) 

 
That is, the weighted sum of the changes in the censored headcount ratios (the ∆𝐶𝐻$) 
equals the total change in the 𝑀). Then, the expression of the marginal contribution of 
dimension 𝑗 to total poverty reduction is given by: 
 

𝑀𝐶$1/D =
;&∆_c&

d1#<𝒙𝒕𝟎 ;5>a1#<𝒙𝒕𝟏 ;5>e
  for any 𝑘 (13) 

 
such that ∑ 𝑀𝐶$1/D&

$'( = 1. In words, expression (13) registers the change in the proportion 
of the total population who has been identified as poor and is deprived in indicator 𝑗 
between 𝑡) and 𝑡(, weighted by the indicator’s weight, as a proportion of total poverty 
change, and thus it can be interpreted as a marginal contribution to multidimensional 
poverty.  
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However, whenever the identification criterion departs from the union approach and an 
intermediate poverty cutoff is used, the interpretation of expression (13) as a dimensional 
marginal contribution should be done with caution. The reason is that the reduction of a 
certain deprivation 𝑗 between 𝑡) and 𝑡(, may have lifted some households from 
multidimensional poverty, even when some deprivations remain. In such case, the 
deprivations of the no-longer poor households in 𝑡( will be censored, and thus, these 
deprivations will not be counted in the censored headcount ratios in 𝑡(. In consequence, the 
contribution of the reduction in the deprivation/s that lifted these households from poverty 
can be under-estimated, underplaying the fiscal effort done in some dimension, and the 
contribution of other dimensions can be overestimated. Yet, one can resort to evaluate the 
change in the uncensored headcount ratios, as a complementary information, as 
recommended by Alkire et al. (2015, chapter 9). This point is further clarified with an 
example in Section 5.2. 
 
4.3 An Impact and a Spending Effectiveness Indicator in the multidimensional case6 
We now introduce an analogue of CEQ’s IE indicator for the multidimensional case. Assume 
that poverty is evaluated with an MPI, with the 𝑀) mathematical structure composed of 𝑑 
indicators that can be influenced by the intervention of the State. Consider the matrix of 
achievements at two points in time: 𝒙𝒕𝟎  and 𝒙𝒕𝟏, and their corresponding multidimensional 
poverty index values 𝑀)@𝒙𝒕𝟎; 𝑧A and 𝑀)@𝒙𝒕𝟏; 𝑧A. Let’s assume there has been a reduction in 
multidimensional poverty as measured by this MPI. Let’s also assume that there is 
information on the fiscal cost the State has incurred to remove one or more of the 𝑑 
deprivations to certain parts of the population, such as a program to bring piped water and 
sewage sanitation to shantytowns in urban areas. Has the fiscal investment done its best at 
reducing poverty? Or could the reductions in deprivations have been allocated differently to 
produce a more effective poverty reduction?  
 
Let 𝑀𝑃 denote a measure of multidimensional poverty. The change of such 
multidimensional poverty measure at two points in time can be noted as ∆𝑀𝑃!#a!). Thus, 
the IE indicator in the multidimensional case, name it 𝐼𝐸1/, will be defined as:  
 

𝐼𝐸1/ =
𝑶𝒃𝒔𝒆𝒓𝒗𝒆𝒅	∆1/!#,!)
𝑶𝒑𝒕𝒊𝒎𝒂𝒍		∆1/!#,!)

  (14) 

 
The twin indicator to the impact effectiveness indicator is the spending effectiveness 
indicator. Analogously to CEQ’s SP indicator, the spending effectiveness in the 
multidimensional case compares the 𝐵	observed fiscal cost incurred to produce the 
observed poverty reduction ∆𝑀𝑃!#a!)with the minimum fiscal effort 𝐵∗ that could have 
been spent to produce the same (or higher) poverty reduction. The expression of the 
Spending Effectiveness indicator in the multidimensional case 𝑆𝐸1/  is thus given by: 
 

 
6 We must emphasize that the word ‘impact’ in these indicators does not have the same meaning as in the 
impact evaluation literature. We are within an accounting framework and our counterfactual (the 
achievement matrix in 𝑡-) depends on strong assumptions. 
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𝑆𝐸1/ =
𝑶𝒑𝒕𝒊𝒎𝒂𝒍	A∗	!@	QE#HG^G	@S8G0^G&	∆1/!#,!)

𝑶𝒃𝒔𝒆𝒓𝒗𝒆𝒅	g
  (15) 

 
It is important to note that there is one fundamental difference between CEQ’s IE and SE 
indicators and the 𝐼𝐸1/and 𝑆𝐸1/proposed here. CEQ’s indicators look at how a given fiscal 
budget is allocated among a set of individuals to increase their incomes and reduce their 
distance to the poverty line. In contrast, the 𝐼𝐸1/ and 𝑆𝐸1/ indicators will be looking at 
how a given fiscal budget is allocated among a set of individuals to convert a deprived 
achievement into a non-deprived one, but each of these has a different cost. That is, 
effectiveness in the multidimensional case needs to simultaneously consider the best 
allocation of money across dimensions (which deprivations to lift?) and across households 
(to whom should these deprivations be lifted?). Additionally, as explained in Section 0, 
individuals are tied together in households, and deprivations are lifted in most cases at the 
household level.  
 
The first element to define the optimal allocation is to select a poverty measure. In the 
𝐼𝐸1/ indicator, the optimal allocation of deprivation reductions will be such that the 
selected poverty measure reduction is maximized given the fiscal effort that has been 
observed between 𝑡) and 𝑡(. In the  𝑆𝐸1/ indicator the optimal allocation of deprivation 
reductions will be such that the observed reduction in the selected poverty measure is 
achieved with the minimum budget possible.  
 
In this paper we propose using an MPI, that is, a measure with the structure of 𝑀)(𝒙; 𝑧), as 
used in most national, regional, and global MPIs so far. As 𝑀) is the incidence of 
multidimensional poverty adjusted by the intensity, using this measure avoids the perverse 
incentives of prioritizing the least intensely poor, which is in line with Sen’s (1976) warning 
for the unidimensional case. Reducing poverty intensity also reduces 𝑀). Using 𝑀) also 
avoids the somehow opposite perverse incentives of using poverty intensity 𝐴 as the sole 
indicator: reduce intensity as long as no one leaves poverty (𝑞 is in the denominator of the 
measure).  
 
While being sensitive to intensity, it is important to note that because 𝑀) is not sensitive to 
inequality among the poor, maximizing its reduction does not guarantee that the poorest 
poor households are lifted deprivations. Poverty intensity 𝐴 is an average, and given two 
households of equal size, 𝐴 and thus 𝑀) will be equally reduced either if we lift a certain 
number of deprivations to a household with a higher deprivation score or to a household 
with a lower deprivation score. Moreover, given two households	ℎ = 1,2, such that one is 
more intensely poor but it is of smaller size than the other (i.e.  𝑐((𝑘) > 𝑐?(𝑘), but 𝑠( < 𝑠?), 
𝐴 and thus 𝑀) will be reduced more if a deprivation is lifted to the bigger household than if 
the same deprivation is lifted to the smaller household, even when it is a poorer one. For 
this reason, we consider two alternative optimal criteria. 
 
The costing of removing each considered deprivation naturally plays a critical role in 
defining the optimal allocation. Thus, in the next section we first address the issue of 
costing. Next, we present the two alternative criteria for the optimal allocation. The first 
criterion consists of looking for the most cost-effective removal of deprivations such that 
these reach the greatest possible reduction in M), i.e to the greatest possible number of 
people. As a second guiding principle, deprivations are removed in decreasing order of 
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poverty intensity, considering the Leave No One Behind (LNOB) pledge of the 2030 Agenda. 
We name this criterion the ‘MaxN-LNOB’ criterion. The second optimal criterion inverts the 
order of the guiding principles: it first looks for the most cost-effective removal of 
deprivation such that these reach the most intensely poor households. As a second guiding 
principle, deprivations are removed in decreasing order of household size. We name this 
criterion the ‘LNOB-MaxN’ criterion.  
 
Whenever the identification of the poor is done at the individual level, and the cost of 
removing the deprivations is also at the individual level, the two criteria produce the same 
optimal distribution. Analogously if, the identification and removal of deprivations is done at 
the household level and household sizes are ignored, the two criteria also produce the same 
results. 
 

4.3.1 Costing of removing deprivations 

A fundamental piece of information for the effectiveness indicators is the costing of 
removing each kind of deprivation. In this paper we are thinking in terms of indicators that 
reflect shared deprivations for the households, for example lack of access to basic services 
networks such as water, sanitation, natural gas and electricity. Housing indicators (for 
example, overcrowding) may also be considered.  
 
In the first place, let’s assume that there is a per household cost of removing each 𝑗 
deprivation which we denote 𝑝ℎ𝑐$, i.e. the cost ‘per connection’. 7 The ratio between the 
cost of removing each deprivation and the MPI’s weight of each deprivation 𝑝ℎ𝑐$ 𝑤$⁄  
suggests an ordering of cost-effectiveness of each dimension, as presented in Table 1. In the 
case in which dimensions are equally weighted, cost-effectiveness is simply given by the 
cost. However, the ordering given by the 𝑝ℎ𝑐$ 𝑤$⁄  ratio is only suggestive because the cost-
effectiveness of removing a deprivation will also be influenced by the size of the poor 
households which are deprived in that indicator. It may be optimal to reduce deprivations in 
an indicator with a higher cost-weight ratio but also with a higher deprivation rate. This will 
be exemplified in Section 0. 
 

Table 1: Cost-Weight ratios  

𝑝ℎ𝑐 of each 𝑗 dimension Weighting in the 𝑀-	of 
each 𝑗 dimension 

Cost-Effectiveness Ratios Suggestive Priorities 

𝑝ℎ𝑐/ 𝑤/ 𝑝ℎ𝑐/ 𝑤/⁄  From lowest cost-
effectiveness ratio to 

highest 
𝑝ℎ𝑐0 𝑤0 𝑝ℎ𝑐0 𝑤0⁄  

… …  
𝑝ℎ𝑐1 𝑤1 𝑝ℎ𝑐1 𝑤1⁄  

 
Presented in this way, the costing of removing each deprivation is assumed to be a) 
independent and constant between households, and b) independent between deprivations. 
However, for many public services this -a priori- may not sound accurate. As it is well 
known, expanding the water, sanitation, gas, or electricity network most typically entails 
very high fixed costs, which in turn imply that the households’ connection cost is decreasing 
in the number of households to be connected. In such case, the 𝑝ℎ𝑐$  for one household 

 
7 This framework can also be adapted to costs expressed per capita.  
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would not be independent of the cost of other households. Also, certain services such as 
water and sewage sanitation have technical complementarities. For example, the extension 
of the sanitation network first requires the extension of the water network. Thus, if an area 
already has the water network, the cost of bringing sanitation is lower than the cost of 
bringing sanitation to an area in which there is no piped water. Nevertheless, these 
considerations can be incorporated in the analysis.  
 
First, while it is true that expanding the access to a public service may entail a significant 
infrastructure investment, this is not always the case. Many urban areas in developing 
countries already have a network for these services and yet not all neighborhoods are 
connected to them. For example, Galiani et al (2009), evaluate the impact of a program of 
expansion of the water network in urban shantytowns in Argentina which was precisely 
focused on extending secondary connections, not the primary water network. 8 In such 
cases, the assumption of independent costs is not unrealistic. Second, the cost of removing 
deprivations can be discriminated by geographic area in the optimization process such that 
all kinds of specificities can be included. Remote areas that require a big infrastructure 
investment will have a higher connection cost than urban areas which have the primary 
network nearby. In such case, the per household cost would be 𝑝ℎQ𝑐$, depending on the 
area 𝑎 where the household is located. Also, in the cases in which a significant investment in 
infrastructure was required to bring connections to certain locations in a country, it should 
be possible to estimate the minimum number of households to connect to the service so 
that a certain per household connection cost would be achieved, and such minimum 
number of connections can be incorporated as a restriction into the optimization process.  
 

4.3.2 Defining the optimal allocation under the MaxN-LNOB criterion for the Impact 
Effectiveness Indicator 

4.3.2.1 Impact Effectiveness under the MaxN-LNOB criterion using a union poverty cutoff 

For simplicity in the exposition of the methodology, we will present it as if one had panel 
data. However, as explained in Section 7, the implementation of the methodology does not 
require panel data. Assume that between 𝑡) and 𝑡( there has been a certain 
multidimensional poverty reduction of size ∆𝑀)!#a!)

= 𝐷𝑀. For the moment, assume that 
the total population	has not changed 𝑛) = 𝑛( = 𝑛, nor the number of households 𝑇( =
𝑇) = 𝑇. For presenting the optimization problem it is useful to consider the change in the 
poverty measure. This is straightforward in the case of the union approach. With 𝑛 invariant 
over time, the change in 𝑀), with 𝑘 = min@𝑤$A can be expressed as: 
 

∆𝑀)!#a!)
@𝑘 = min@𝑤$AA = 𝑀)

!#
@𝑘 = min@𝑤$AA − 𝑀)!)

@𝑘 = min@𝑤$AA =
(
*
.∑ 𝑤$ ∑ 𝑠#@𝑔#$!#

) − 𝑔#$!)
) A+

#'(
&
$'( / = 𝐷𝑀		(16) 

 
In words, under the union approach, the change in 𝑀) can be expressed as the 
dimensionally weighted sum of the number of people (expressed in turn as the weighted 
sum of households, with weights being their corresponding sizes 𝑠#) that have stopped 

 
8 In fact, a technical condition for the shantytown to access the program was that the neighborhood had to be 
less than two hundred meters away from the main water network. 
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being deprived in each dimension. This does not hold for 𝑘 poverty cutoffs other than union 
because the remaining deprivations in 𝑡(	of those who have stopped being poor are 
censored. This is further explained below.  
 
Now assume that the poverty reduction 𝐷𝑀 has been achieved with a fiscal budget of 
amount 𝐵. Let’s assume that the cost of removing each 𝑗 deprivation is given by the per 
household cost 𝑝ℎ𝑐$, with the considerations done in Section 4.3.1Error! Reference source 
not found., such that these may be refined taking different values across geographical 
areas.  
 
The optimization problem consists of finding a distribution 𝑡∗ in which the sets of 
households 𝑅$ = cℎ: (𝑔#$!#

) − 𝑔#$!∗	
) ) = 1e, with size f𝑅$f = 𝑇$h  for 𝑗 = 1,…𝑑 satisfies that: 

 
(
*
.∑ 𝑤$ ∑ 𝑠#@𝑔#$!#

) − 𝑔#$!∗
) A+#

#'(
&
$'( / is maximum, subject to: 

 
∑ 𝑝ℎ𝑐$𝑇$h&
$'( ≤ 𝐵 (the cost of reducing poverty must be within the observed fiscal budget) 

 
Note that  𝑇$h  is the total number of households to which deprivation 𝑗 has been removed 
between 𝑡) and 𝑡∗. 
 
As explained in Section 4.3.1, if needed, a restriction on the required minimum number of 
connections to a service that need to be achieved, let it be denoted by 𝑒, can be 
incorporated as a further restriction: 𝑒 ≤ 𝑇$h  with 𝑒 ∈ ℝ%%. 9 
 
Such a linear programming problem can be easily solved with a software like Mathematica. 
Moreover, the above optimization problem, which maximizes the reduction in MPI, and 
thus prioritizes bigger households, can be implemented within an algorithm that has, as a 
second guiding principle, the LNOB criterion. That is, given two households	ℎ = 1,2, of equal 
size 𝑠( = 𝑠?, such that it is optimal that a certain deprivation is removed to one of them, an 
algorithm which starts from the solution values of the linear programing problem can select 
the household with the highest deprivation score. If  𝑐((𝑘) > 𝑐?(𝑘), then the deprivation 
will be removed to household 1.  
 
While this procedure can be relatively easily implemented, it is not general enough, as it 
does not hold for the case of poverty cutoffs which are not the union criterion. We address 
that case next. 
 
4.3.2.2 Impact Effectiveness under the MaxN-LNOB criterion in the general case: allowing 

an intermediate poverty cutoff 

Whenever the poverty cutoff k is not the one of the union criterion, the removal of a 
deprivation can lift a household from poverty, according to that k-cutoff, even when other 
deprivations remain. The remaining deprivations must be censored and should thus 

 
9 If the exercise is implemented with household survey data which contains a survey weight variable 𝑝23!, the 
change in the poverty measure is given by: ∆𝑀-3!43"

+𝑘 = min+𝑤511 = ∑ ∑ 𝑠2𝑝23!+𝑔253!
- − 𝑔253∗	

- 1/𝑛7!
28/

1
58/ , 

and the budget constraint is expressed as ∑ 𝑝23!𝑝ℎ𝑐5𝑇5
91

58/ ≤ 𝐵.  
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‘disappear’ from the objective function of expression (16). Thus, the optimization in this 
case, cannot be solved with a linear programing problem. It must be solved as an iterative 
optimization problem, that re-identifies the poor after each removal of deprivations and 
censors the deprivations of those who have stopped being poor.  
 
To present the optimization process under the MaxN-LNOB criterion for the 𝐼𝐸1/	indicator 
in the general case of an any poverty cutoff, including an intermediate or even intersection 
one, it is useful to define a cost-effectiveness matrix 𝑪𝑬𝑰𝑬, which constitutes the decision 
tool. Whenever the 𝑘 poverty cutoff is different from the one corresponding to the union 
criterion (𝑘 > min	(𝑤$)), the 𝑪𝑬𝑰𝑬 matrix will change in each iteration. 
 
Denote with 𝑣	the iteration number, with 𝑣 = 1,… , 𝑉. Iteration number 𝑉 is such that an 
optimal distribution has been found. Let _𝑣 denote the current iteration, and thus _𝑣 − 1 as 
the previous one. The cost-effectiveness matrix for the 𝐼𝐸1/ indicator in each iteration, is 
given by 𝑪𝑬_𝒗𝑰𝑬 = .𝑐𝑒#$_^DB /, such that: 
 

𝑐𝑒#$_^DB =
(8%/*)	;&_;

∗ 	9%&(_;,))
# (:)

.#E&
  (23) 

where: 
𝑤$_^∗ = ∑ 𝑤$𝑔#$(_^a())&

$'(  if (𝑐#(_^a() −𝑤$) < 𝑘 (removing deprivation 𝑗 would lift household 
ℎ from poverty) 
𝑤$_^∗ = 𝑤$  if (𝑐#(_^a() −𝑤$) ≥ 𝑘 (removing deprivation 𝑗 would still leave household ℎ in 
poverty) 
With 𝑐#(_^a() = 𝑐#!#  for 𝑣 = 1. 
 
In words, the numerator of each 𝑐𝑒#$_^DB  element indicates by how much the MPI would be 
reduced if deprivation 𝑗 was lifted to household ℎ. This general formula accounts for the 
case in which an intermediate poverty cutoff is used and thus the need to define the 𝑤$∗ 
parameter. When the weight of deprivation 𝑗, 𝑤$, is such that removing that deprivation 
would lift that household from poverty, that is, when (𝑐#(_^a() −𝑤$) < 𝑘, then the full 
impact of removing that deprivation in the MPI reduction should not only consider the j-th 
deprivation’s weight  𝑤$, but rather the sum of the weights of all the deprivations still 
experienced by that household up to the previous iteration (_𝑣 − 1) (𝑤$_^∗ =
∑ 𝑤$𝑔#$(_^a())&
$'( ), as the remaining deprivations will be censored once the household is 

lifted up from poverty. Otherwise, when removing deprivation j is not sufficient for 
removing that household from poverty, i.e. when (𝑐#(_^a() −𝑤$) ≥ 𝑘 , then only the j-th 
deprivation weight matters in the account of poverty reduction, and thus 𝑤$_^∗ = 𝑤$  . In 
turn, the denominator of each 𝑐𝑒#$  element indicates the cost of removing deprivation j. 
Altogether, each 𝑐𝑒#$_^𝑰𝑬  element of matrix  𝑪𝑬𝑰𝑬 indicates the reduction in 𝑀) produced by 
one monetary unit spent in eliminating the j-th deprivation for household ℎ . 
 
It is also necessary to define the accumulated cost of removing deprivations up to each _𝑣 
iteration, which is given by: 
 

𝐴𝑐𝑐𝐶𝑜𝑠𝑡_^ = ∑ ∑ 𝑝ℎ𝑐$ ∑ @𝑔#$(_^a()) (𝑘) − 𝑔#$_^) (𝑘)A	+
#'(

&
$'(

_^
^'(  (24) 
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with 𝑔#$(_^a()) = 𝑔#$!#

)  for 𝑣 = 1. 
 
Expression (24) indicates that the accumulated cost up to iteration _𝑣 is given by the change 
of household ℎ from being deprived in indicator 𝑗 in the previous iteration to being non- 
deprived in the current iteration, in which case 𝑔#$(;a(

) (𝑘) − 𝑔#$;
) (𝑘) = 1, multiplied by the 

cost of removing deprivation 𝑗, 𝑝ℎ𝑐$, adding across all 𝑇	households and 𝑑 dimensions, 
accumulating all the iterations up to the current one. 
 
Now we can describe the optimization algorithm, written in Mathematica, which iteratively 
proceeds in this way. In each current _𝑣	 iteration: 

1) It finds the maximum value(s) of the 𝑪𝑬_𝒗𝑰𝑬 matrix.  
2) It verifies that the accumulated cost of removing that deprivation	𝑗 from household 

ℎ is within the budget, ie.: 𝐴𝑐𝑐𝐶𝑜𝑠𝑡_^ ≤ 𝐵. 
a. If this is not the case, the algorithm discards removing that j deprivation to 

that household.  
b. If the condition holds, whenever there are two equal cost-effectiveness 

values, the algorithm selects the household which has the highest 
deprivation score and removes that deprivation from that household. 

3) The algorithm re-identifies the poor (according to the 𝑘 value) and censors the 
deprivations of the non-poor. It computes the 𝑪𝑬(_𝒗%𝟏)𝑰𝑬  matrix (i.e. the cost-
effectiveness matrix for the next iteration). 

4) Steps 1-3 are repeated until the budget limit is reached, i.e.  until  
𝐴𝑐𝑐𝐶𝑜𝑠𝑡_^ = 𝐵	10 

or until the remaining budget is not enough to remove any other deprivation. 
 
Implementing this algorithm is equivalent to solving the linear programming problem 
detailed before, but in the general case in which such problem needs to be solved 
iteratively. The MaxN-LNOB criterion is exemplified in Section 0.  
 
The algorithm can be implemented with household survey data, with a survey weight 
variable. Note that the values of the  𝑪𝑬𝑰𝑬	matrix remain the same as if there were no 
survey weights, because the survey weight 𝑝# multiplies both the numerator (the survey 
weight affects the MPI reduction) and the denominator (the per household cost of removing 
deprivation 𝑗 to an ℎ household needs to be multiplied the number of households that 
household represents). However, both the computation of the poverty reduction 𝐷𝑀 as 
well as the accumulated cost, need to incorporate the survey weight variable in their 
expressions, as detailed in footnote 18. Thus, the selected deprivations to be removed to 
which households will naturally differ from the case in which there are no survey weights. 
 
It is also worth noting that the algorithm can be adapted to include additional constrains, 
like (for instance) the restriction that deprivations must be removed for a minimum number 
of households for technical reasons related to costing. Similarly, the per household costs of 

 
10 Equivalently, until ∑ 𝑝ℎ𝑐5𝑇591

58/ = 𝐵. 
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removing each deprivation need not be the same across all households. Variations 
according to their geographical location can also be incorporated.  

4.3.3 Defining the optimal allocation under the MaxN-LNOB criterion for the Spending 
Effectiveness Indicator 

We now present the same criterion but for the 𝑆𝐸1/ indicator.  
 
4.3.3.1 Spending Effectiveness under the MaxN-LNOB criterion using a union poverty cutoff  

Looking for the optimal distribution under the MaxN-LNOB criterion for the 𝑆𝐸1/	indicator 
with a union poverty cutoff consists of solving the dual of the linear programming problem 
set for the 𝐼𝐸1/ indicator, and this can be stated as follows. 
 
Find a distribution 𝑡∗ in which the sets of households 𝑅$ = cℎ: (𝑔#$!#

) − 𝑔#$!∗	
) ) = 1e with 

size f𝑅$f = 𝑇$h, for 𝑗 = 1,…𝑑, satisfies that: 
 
∑ 𝑝ℎ𝑐$𝑇$h&
$'(  is minimum, subject to: 

 
(
*
.∑ 𝑤$ ∑ 𝑠#@𝑔#$!#

) (𝑘) − 𝑔#$!∗	
) (𝑘)A+#

#'(
&
$'( / ≥ 𝐷𝑀 (the reduction in poverty must be at least 

the observed one) 
 
Like for the 𝑆𝐸1/, given the solution to the linear programming problem, for each 
household size to which a certain deprivation must be removed, one can select the 
households with the highest deprivation scores, such that the second guiding principle is the 
LNOB criterion.  
 
As with the 𝑆𝐸1/ indicator, to generalize the optimization process to any poverty cutoff, we 
need to define an iterative optimization process analogous to the one defined above. 
 
4.3.3.2 Spending Effectiveness under the MaxN-LNOB criterion in the general case: 

allowing an intermediate poverty cutoff 

Continuing with the same notation, we now define the cost-effectiveness matrix for the 
𝑆𝐸1/ indicator. For that, it is necessary to define the accumulated poverty reduction until 
the iteration before the current _𝑣 iteration, which is given by: 
 

𝐴𝑐𝑐𝐷𝑀(_^a() =
(
*
∑ ∑ 𝑤$ ∑ 𝑠#@𝑔#$_^a?) (𝑘) − 𝑔#$(_^a()) (𝑘)A+

#'(
&
$'(

_𝒗a(
^'(  (25) 

 
Then, the cost-effectiveness matrix for the 𝑆𝐸1/indicator  𝑪𝑬_𝒗𝑺𝑬 = .𝑐𝑒#$_^oB /, is such that: 
 

𝑐𝑒#$_^oB =
1H*dp1aqEEp1(_;,)),			(8%/*);&;

∗ 9%&!_;
# (:)e

.#E&
 (26) 

 
where 𝑤$_^∗  is the same as defined in (23). Expression (26) indicates that, for each iteration 
_𝑣, the cost-effectiveness coefficients of the 𝑪𝑬_𝒗𝑺𝑬 matrix are the same coefficients of the 
𝑪𝑬_𝒗𝑰𝑬  matrix whenever these are smaller than the difference between the target poverty 
reduction and the accumulated poverty reduction up to the iteration previous to the current 
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one. This will surely be the case for the first iterations. As poverty reduction progresses by 
lifting deprivations, the gap between the target poverty reduction and the already achieved 
one, i.e. 𝐷𝑀 − 𝐴𝑐𝑐𝐷𝑀(_^a(),  will narrow and, at some advanced iteration, for at least one 
(ℎ, 𝑗), such distance will become smaller than the expression 𝑠#	𝑤$_^∗ 	𝑔#$(_^a()) (𝑘), which 
gives the reduction in poverty  that can be achieved by lifting deprivation 𝑗, to household ℎ. 
Then, the minimum value divided by the cost of removing that deprivation will be the 𝑐𝑒#$_^𝑺𝑬  
coefficient. The intuition is that, because the optimal distribution for the spending 
effectiveness indicator is a minimization exercise, as the optimal allocation of the budget 
approaches the target, the last selected deprivations to be removed do not need to be 
those with the biggest poverty reduction impact but rather those required to just meet the 
target. Otherwise, poverty reduction could exceed what it is required by the exercise, and 
thus the budget would not be minimized. 
 
Using the 𝑪𝑬𝑺𝑬 matrix, the optimization algorithm, developed in Mathematica, iteratively 
proceeds in this way: 

1) It finds the maximum value(s) of the 𝑪𝑬_𝒗𝑺𝑬 matrix.  
a. Whenever there are two equal cost-effectiveness values, it selects the 

household which has the highest deprivation score ad it removes that 
deprivation from that household. 

2) It verifies that the accumulated poverty reduction has not yet reached the poverty 
reduction target 𝐷𝑀, i.e. that  𝐴𝑐𝑐𝐷𝑀(_^) < 𝐷𝑀 

3) It re-identifies the poor (according to the 𝑘 value) and censors the deprivations of 
the non-poor. It computes the 𝑪𝑬(_𝒗%𝟏)𝑺𝑬  matrix (i.e. the cost-effectiveness matrix for 
the next iteration). 

4) Steps 1-3 are repeated until the accumulated decrease in 𝑀) is at least 𝐷𝑀, i.e. until 
𝐴𝑐𝑐𝐷𝑀(_^) ≥ 𝐷𝑀. 
 

This algorithm is exemplified in Section 5.1.20. The algorithm can be implemented with 
household survey data, with a survey weight variable.   
 
As explained above, the MaxN-LNOB criterion does not guarantee that the poorest poor 
households are lifted deprivations, but rather that the most cost-effective deprivations are 
lifted to the greatest number of people. In the above algorithms larger households will be 
prioritized and, as it will be exemplified in Section 5, in the optimal allocation under this 
criterion, the poorest households may be left as poor as they were initially, or with little 
change. While empirically it is frequently the case that the poorer households tend to be 
larger, this may not always hold. Then, it is reasonable to consider an optimization criterion 
that explicitly prioritizes the poorest poor, embodying the philosophical principle of 
prioritarianism, in the spirit of the Leave No One Behind claim of the 2030 Agenda. This 
criterion is detailed in what follows. 
 
Note however, that if deprivations were removed to individuals and not households, or if 
household sizes were ignored, the MaxN-LNOB criterion would coincide with the next 
proposed criterion, the LNOB-MaxN. In such case, the elements of the 𝑪𝑬𝑰𝑬 and 𝑪𝑬𝑺𝑬 
matrices would not have the household size variable 𝑠#, and thus the most cost-effective 
indicators would be lifted to the poorest poor. 
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4.3.4 Defining the optimal allocation under the LNOB-MaxN criterion for the Impact 
Effectiveness Indicator 

Under the LNOB-MaxN criterion the optimal allocation is such that deprivations are 
removed to the poorest poor households in the first place, even when this does not imply 
removing deprivations to the greatest number of people. That is, the main criterion driving 
the optimization solution is that the most cost-effective deprivations are lifted to the 
poorest poor households. Naturally, the next guiding principle in the optimization problem 
is, from the poorest households, choose the largest ones, to guarantee that, among the 
poorest poor, deprivations are lifted to the greatest number. That is why we call this the 
LNOB-MaxN criterion, as it simply inverts the order of the guiding optimization principles 
compared to the previous criterion. 
 
In this case, the optimization criterion needs to work iteratively even when the union 
poverty cutoff is used because poor households with the maximum deprivation score need 
to be identified after each round of lifting deprivations. Thus, we directly detail the 
algorithm. Noteworthy, the algorithm is based on the same decision tool as the MaxN-LNOB 
criterion, the 𝑪𝑬_𝒗𝑰𝑬 matrix. The only difference is the order in which the elements of the 
matrix are selected. 
 
Using the 𝑪𝑬𝑰𝑬 matrix, the optimization LNOB-MaxN algorithm, developed in Mathematica, 
proceeds in this way: 

1) It orders the rows of the 𝑪𝑬_𝒗𝑰𝑬 matrix by the censored deprivation score 𝑐H(𝑘), from 
poorest to least poor. 

2) It finds the maximum value(s) of the 𝑪𝑬_𝒗𝑰𝑬  matrix in the rows corresponding to the 
maximum deprivation score. 

a. Whenever there are two equal cost-effectiveness values for different 
households with the highest deprivation score, it selects the household which 
has the biggest size and removes that deprivation from that household. 

3) It verifies that the accumulated cost of removing that deprivation	𝑗 from household 
ℎ is within the budget, ie.: 𝐴𝑐𝑐𝐶𝑜𝑠𝑡_^ ≤ 𝐵. If this is not the case, it discards removing 
that j deprivation to that household.  

4) The algorithm re-identifies the poor (according to the 𝑘 value) and it censors the 
deprivations of the non-poor. It computes the 𝑪𝑬(_𝒗%𝟏)𝑰𝑬  matrix (i.e. the cost-
effectiveness matrix for the next iteration). 

5) Steps 1-4 are repeated until the budget limit is reached, i.e.  until  
𝐴𝑐𝑐𝐶𝑜𝑠𝑡_^ = 𝐵	 

or until the remaining budget is not enough to remove any other deprivation. 
 

4.3.5 Defining the optimal allocation under the LNOB-MaxN criterion for the Spending 
Effectiveness Indicator 

Analogously, the algorithm that implements the LNOB-MaxN criterion to find the optimal 
allocation for the 𝑆𝐸1/ indicator, uses the same decision tool as the MaxN-LNOB criterion, 
the 𝑪𝑬_𝒗𝑺𝑬 matrix, with the only difference being the order in which the elements of the 
matrix are selected. 
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Using the 𝑪𝑬𝑺𝑬 matrix, the optimization LNOB-MaxN algorithm, developed in Mathematica, 
proceeds in this way: 

1) It orders the rows of the 𝑪𝑬_𝒗𝑺𝑬  matrix by the censored deprivation score 𝑐H(𝑘), from 
poorest to least poor. 

2) It finds the maximum value(s) of the 𝑪𝑬_𝒗𝑺𝑬 matrix in the rows corresponding to the 
maximum deprivation score. 

a. Whenever there are two equal cost-effectiveness values for different 
households with the highest deprivation score, it selects the household which 
has the biggest size and removes that deprivation from that household. 

3) It verifies that the accumulated poverty reduction has not yet reached the poverty 
reduction target 𝐷𝑀, i.e. that  𝐴𝑐𝑐𝐷𝑀(_^) < 𝐷𝑀. 

4) It re-identifies the poor (according to the 𝑘 value) and censors the deprivations of 
the non-poor. It computes the 𝑪𝑬(_𝒗%𝟏)𝑺𝑬  matrix. 

5) It repeats steps 1-4 until the accumulated decrease in 𝑀) is at least 𝐷𝑀, that is: 
𝐴𝑐𝑐𝐷𝑀(_^) ≥ 𝐷𝑀 

 
 
As a general note, we should remark that the four described algorithms (MaxN-LNOB and 
LNOB-MaxN, for impact and spending effectiveness), based on the 𝑪𝑬_𝒗𝑰𝑬	and the 𝑪𝑬_𝒗𝑺𝑬 
matrices correspondingly could, in certain cases and due to the discrete character of the 
procedure (deprivations are lifted one household at a time), generate suboptimal 
allocations in the ‘last mile’ of the algorithm. That is, the last deprivations selected to be 
removed such that the constraint is satisfied, may result in falling slightly short of using all 
the budget in IE, or in overcompliance of the poverty reduction target in SE. In such cases, it 
may be possible to find an alternative combination of deprivations’ removal which may 
perfect the original matrix solution, approximating the satisfaction of the corresponding 
constraint with finer tuning. However, this is not a matter for concern when implementing 
the algorithms with real data, which have population sizes in which the discrete effect is 
diluted. To avoid those possible cases in which the solution would be sub-optimal the 
algorithms could adopt a different approach, doing a step-by-step iterative optimization 
process but at the cost of a substantial longer computing time. We understand that such 
cost is not worth it given the marginal effective incidence of this issue in real data 
applications. 
 



 22 

5 Examples illustrating the methodology 

In this section we will exemplify the two alternative criteria to determine the optimal 
allocation for the 𝐼𝐸1/ and the 𝑆𝐸1/indicators: MaxN-LNOB vs. LNOB-MaxN under a union 
poverty cutoff as well as under an intermediate poverty cutoff. In this example we assume 
equal weights.1  
 
Assume a society of 10 households adding up to a total of 40 people. For simplicity we 
assume there are no survey weights, but these can be incorporated as detailed above. The 
example proceeds as if one had a panel and there was no population growth. In Section 7 
we explain how to work with cross-section data and deal with population growth. Assume 
that multidimensional poverty is measured using four indicators which have received fiscal 
investment: water, sewage, natural gas and electricity. Let’s consider a baseline case in 
which all indicators weight the same: 𝑤$ =

(
r
 for 𝑗 = 1,2,3,4. Consider the following per 

household costs of removing each deprivation. As in this case weights are equal across 
indicators, the order of priority is simply given by the cost, as detailed in Table 2. 
 

Table 2: Per Household Costs – Example with equal weights 

Dimension 𝑝ℎ𝑐 of each 𝑗 
dimension 

Weighting in the 
𝑀-	of each 𝑗 
dimension 

Cost-Effectiveness 
Ratios 

Priorities 

Water 800 0.25 3200 2 
Sanitation 2300 0.25 9200 4 
Gas 900 0.25 3600 3 
Electricity 400 0.25 1600 1 
 
 

5.1.1 Impact Effectiveness under different optimal criteria and different poverty cutoffs 

In Table 3 we present the deprivation matrix in 𝑡) and in 𝑡(, with households ordered from 
poorest to richest, using a union poverty cutoff (k=0.25), and the optimal distributions that 
result from the MaxN-LNOB and the LNOB-MaxN criteria correspondingly. We also present a 
column on whether the household is identified as poor or not in each distribution, as well as 
the censored deprivation score of each distribution, which, in this case, coincide with the 
uncensored deprivation scores. In Table 4 we present the same distributions but using an 
intermediate (high) poverty cutoff of k=0.75. Zeroes in light blue denote censored 
deprivations. 
 
According to the distributions, we are assuming that, between these two points in time, 
poverty was reduced removing deprivation in water to two households, deprivation in 
sanitation to one household, deprivation in natural gas to two households and deprivation 
in electricity to three households, with a spent budget of $6,900 (𝐵 = 2 ∗ 800 + 1 ∗ 2300 +
2 ∗ 900 + 3 ∗ 400 = 6,900). Deprivations that are removed appear as a red zero in the 
deprivation matrix in 𝑡( as well as in the optimal distributions. 
 

 
1 For examples using unequal weights, see the Appendix of Santos et al (2023). 
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As detailed in the first rows of Table 7, from 𝑡) to 𝑡( there was a reduction of 0.163 in the 
MPI using a union poverty cutoff, which is the result of reducing the poverty headcount 
ratio in 0.05 (note that household #7 stopped being poor), and a reduction in poverty 
intensity of 0.149. If an intermediate poverty cutoff of k=0.75 is used, poverty was reduced 
in 0.244, also with a reduction both in H and A. Note that in this case, because of the higher 
poverty cutoff, three households (#2, #3 and #4) stopped being poor. 
 
Now suppose one wants to assess the impact effectiveness of that fiscal effort. 
Implementing the algorithm under the MaxN-LNOB criterion, which maximizes the 
reduction in 𝑀) gives the distribution described in the third matrix of Table 3, with the red 
zeroes denoting the deprivations that the optimal allocation removes. This distribution 
results from implementing the described algorithm using the 𝑪𝑬𝑰𝑬 matrix. To illustrate the 
methodology, we present the 𝑪𝑬𝑰𝑬 matrix in Table 5, with red entries on the deprivations 
that is optimal to lift according to each criterion. As in this case a union poverty cutoff is 
used, the coefficients of the cost-effectiveness matrix can only change from their initial 
values  to zero (when deprivations are removed) and thus we can simply present one 
matrix.2  
 
Note that in the optimal MaxN-LNOB distribution, the budget is used to completely remove 
deprivation in the most cost-effective dimension (i.w. that one with the lowest 𝑝ℎ𝑐$/𝑤$   
ratio), electricity. It is also used to remove deprivation in the second most cost-effective 
dimension -water- to two of the five households deprived in that indicator, but not to the 
five of them. This is because three of the households deprived in water are small 
(households #2 and #3 are of three members, and household #7 is of two members), and it 
reduces poverty more to remove deprivation in the third most cost-effective dimension -
gas- to households that are larger. Being sanitation the least cost-effective dimension, no 
household is removed deprivation in this dimension. The total budget used is $6,300. The 
remaining $600 are not enough for reducing any of the deprivations left. The total MPI 
reduction under this allocation is 0.269, much higher than the observed reduction of 0.163, 
and thus the impact effectiveness indicator in this case is 61%, as detailed in Table 7, 
indicating that the spent budget only achieved 61% of the potential MPI reduction. 
 
However, also note that in this solution, two of the poorest households, households #2 and 
#3, which were deprived in all dimensions, only have seen reduced their weighted 
deprivations in 0.25, whereas, for example, household #4, with a lower initial deprivation 
score of 0.75, has seen its deprivation score being reduced in 0.5. As explained, this is 
because this the MaxN-LNOB criterion gives priority to removing deprivations to larger 
households over removing deprivations to more intensely poor households.  
 
Now, suppose we implement the LNOB-MaxN criterion, looking for the most cost-effective 
eradication of deprivations but prioritizing the poorest poor households in every round of 
deprivation removal. Under this optimal criterion, which distribution is depicted in the 
fourth matrix of Table 3, deprivation in the first and the second most cost-effective 
dimensions -electricity and water- are lifted to all poor and deprived households in those 

 
2 The MaxN-LNOB optimal distribution can also be obtained stating the linear programming problem in 
Mathematica, as detailed in Section 4.3.2.1. 
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dimensions. Note that lifting water deprivation to all households differs from the MaxN-
LNOB solution, in which households #7, #2 and #3 are not removed this deprivation. Finally, 
deprivation in natural gas can be removed to the poorest-biggest household left after the 
removal of the other deprivations.3 In this case, the full $6,900 budget is used and the 
achieved MPI reduction is of 0.263, a bit lower than with the MaxN-LNOB criterion, thus, the 
impact effectiveness indicator is a bit higher under this optimal allocation, 62%.  
 
However, while the reduction of MPI with a union poverty cutoff is not necessarily 
maximized with the LNOB-MaxN criterion, note that with this distribution no household is 
left with a deprivation of 0.75 or higher (the distribution of deprivation scores of the MaxN-
LNOB criterion and the LNOB-MaxN criterion can be compared in last two columns of Table 
3). Thus, impact effectiveness under this criterion should also be evaluated with an MPI with 
a higher deprivation cutoff. Indeed, if an MPI with a k=0.75 is computed over the two 
optimal distributions, as detailed in the three last columns of Table 7, one can see that 
poverty is reduced to 0 under the LNOB-MaxN distribution, and thus impact effectiveness is 
reduced to 56%. In contrast, under the MaxN-LNOB criterion, MPI with k=0.75 is reduced 
only to 0.112, and so impact effectiveness of the observed distribution is higher, 75%.  
 
One way to visualize the difference between the two optimal allocations is depicting the 
multidimensional dominance curves introduced in Alkire et al (2015, ch. 7). Figure 1 depicts 
the Complementary Cumulative Distribution Functions for MaxN-LNOB and LNOB-MaxN, 
which indicate (in the y-axis) the proportion of people who have a 𝑐H  score equal or higher 
than each 𝑘	value, i.e., they indicate the 𝐻 for the different 𝑘 values (in the x-axis). These 
are first order dominance curves. In turn, Figure 2Figure 2 depicts the Adjusted Headcount 
Ratio dominance curves, which indicate the 𝑀) value at each possible k value. It is a second 
order dominance curve. In both cases, whenever a distribution A has a curve which lies 
somewhere below and nowhere above the curve of another distribution B, we can say that 
distribution A stochastically dominates distribution B, meaning, in the first case, that 
distribution A has an equal or lower 𝐻 than distribution B at all possible 𝑘 values and, in the 
second case, that distribution A has an equal or lower  𝑀)	than distribution B at all possible 
𝑘 values.  
 
In both figures the curves of the MaxN-LNOB and the LNOB-MaxN cross. In Figure 1, for a k 
value of up to 0.5, the MaxN-LNOB solution dominates the LNOB-MaxN, as it has lower 𝐻, 
but from then onwards, the LNOB-MaxN dominates. In the second order dominance curves 
presented in Figure 2, we also notice a similar pattern: the MaxN-LNOB solution dominates 
the LNOB-MaxN up to a k of 0.75, meaning that it has a lower 𝑀) value, but from then 
onwards, the LNOB-MaxN dominates. Therefore, it is reasonable that for MPI values with 
high poverty cutoffs the impact effectiveness assessment under the LNOB-MaxN optimal 
distribution is more demanding than the MaxN-LNOB, giving an effectiveness of only 56% 

 
3 The sequence is as follows. From the 𝑪𝑬𝑰𝑬 matrix depicted in the last four columns of Table 5, first 
deprivation in electricity is removed to household #1, next to households #2 and #3. Next, by looking at the 
maximum coefficients of all households with a deprivation score of 0.75 (now the highest), deprivation in 
electricity is removed to household #5. Then, deprivation in water is removed to household #4, and then to 
households #1, #2 and #3. Next, by looking at the maximum coefficients of all households with a deprivation 
score of 0.5 (now the highest), deprivation in electricity is removed to household #6. Finally, there is budget 
left to remove deprivation in gas to household #4. 
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vs. an effectiveness of 75%. This simply implies that with $6,900 multidimensional poverty 
of high intensity could have been reduced much more, and in this example -in fact- 
eradicated, had the poorest households been prioritized. 
 
What happens if the optimal distributions under the two alternative criteria are computed 
over the censored distribution? This is detailed in Table 4 for the case of an intermediate 
poverty cutoff 𝑘 = 0.75. With an intermediate cutoff one needs to ignore the deprivations 
of those who are not identified as poor (𝑐H < 0.75), marked in light blue. In this case, 
because of using a poverty cutoff higher than the union one, the coefficients of the 𝑪𝑬𝑰𝑬 
matrix will change in each iteration, because removing a certain deprivation may become 
more cost-effective if, after the removal of some other deprivation, lifting this one would 
move the household out of poverty. This is exemplified in Table 6, which depicts how the 
𝑪𝑬𝑰𝑬 matrix changes in each iteration when implementing the MaxN-LNOB criterion. 
 
In this case, because of the censoring of the deprivations of those with a lower deprivation 
score, the optimal distribution according to the MaxN-LNOB criterion coincides with that of 
the LNOB-MaxN criterion (although the sequence to arrive to the same result is different): 
both eradicate poverty, and thus, the evaluations of impact effectiveness also coincide in 
being 56%, suggesting that poverty reduction for the poorest poor stayed about halfway 
(see Table 7). The fact that the two distributions coincide for a high poverty cutoff is not 
unequivocal however, it depends on the distribution of household sizes alongside the 
distribution of deprivation scores, and the particular k value used. 
 
Also note that because of the censoring, the available budget under the two optimal 
distributions is underutilized: poverty, as measured by an MPI with k=0.75, is eradicated 
with $4800, much less than the available budget of $6900, missing the opportunity to lift 
the censored deprivations. In particular, when the uncensored distribution of deprivations is 
used, the optimal distribution under the LNOB-MaxN criterion, once having eradicated 
deprivation scores of 1 and 0.75, uses the remaining budget to reduce deprivations among 
households with the next highest poverty intensity. 
 
If the aim is to reduce multidimensional poverty prioritizing the poorest poor and making 
use of all the available budget, the recommendable evaluation metric seems to be 
implementing the LNOB-MaxN optimization algorithm over the uncensored distribution of 
deprivations and evaluating impact effectiveness using alternative poverty cutoffs, from 
highest to lowest. Such evaluation will elucidate which poverty-intensity groups have been 
privileged by the fiscal effort. 
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Table 3: Impact Effectiveness – Equal Weights – Union Criterion (k=0.25) – MaxN-LNOB vs. LNOB-MaxN 

HH# HH 
Size 

Weighted deprivations t0 Weighted deprivations t1 Weighted deprivations 
Optimal MaxN-LNOB 

Weighted deprivations 
Optimal LNOB- MaxN 

P 
t0 

P 
t1 

P 
M
N-
LN 

P 
LN-
M
N 

ci(k) 
t0 

ci(k) 
t1 

ci(k) 
MaxN-
LNOB 

ci(k) 
LNOB-
MaxN W_W W_S W_G W_E W_W W_S W_G W_E W_W W_S W_G W_E W_W W_S W_G W_E 

1 4 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0 0.25 0 0 0 0.25 0.25 0 1 1 1 1 1 1 0.25 0.5 
2 3 0.25 0.25 0.25 0.25 0.25 0.25 0 0 0.25 0.25 0.25 0 0 0.25 0.25 0 1 1 1 1 1 0.5 0.75 0.5 
3 3 0.25 0.25 0.25 0.25 0.25 0.25 0 0 0.25 0.25 0.25 0 0 0.25 0.25 0 1 1 1 1 1 0.5 0.75 0.5 
4 5 0.25 0.25 0.25 0 0 0.25 0.25 0 0 0.25 0 0 0 0.25 0 0 1 1 1 1 0.75 0.5 0.25 0.25 
5 5 0 0.25 0.25 0.25 0 0.25 0.25 0.25 0 0.25 0 0 0 0.25 0.25 0 1 1 1 1 0.75 0.75 0.25 0.5 
6 5 0 0.25 0 0.25 0 0.25 0 0 0 0.25 0 0 0 0.25 0 0 1 1 1 1 0.5 0.25 0.25 0.25 
7 2 0.25 0.25 0 0 0 0 0 0 0.25 0.25 0 0 0 0.25 0 0 1 0 1 1 0.5 0 0.5 0.25 
8 7 0 0.25 0 0 0 0.25 0 0 0 0.25 0 0 0 0.25 0 0 1 1 1 1 0.25 0.25 0.25 0.25 
9 3 0 0 0.25 0 0 0 0.25 0 0 0 0.25 0 0 0 0.25 0 1 1 1 1 0.25 0.25 0.25 0.25 
10 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Number 
of People 

40 17 34 23 20 10 32 17 9 8 34 9 0 0 34 18 0 37 35 37 37     

CHs  43% 85% 58% 50% 25% 80% 43% 23% 20% 85% 23% 0% 0% 85% 45% 0%         

 
Table 4: Impact Effectiveness – Equal Weights – Intermediate Criterion (k=0.75) – MaxN-LNOB vs. LNOB-MaxN 

HH# HH 
Size 

Censored 
Weighted deprivations t0 

Censored 
Weighted deprivations t1 

Censored 
Weighted deprivations  
Optimal MaxN-LNOB= 
=Optimal LNOB-MaxN 

P 
t0 

P 
t1 

P 
MN-LN= 
LN-MN 

ci(k) 
t0 

ci(k) 
t1 

ci(k) 
MaxN-
LNOB= 
LNOB-
MaxN W_W W_S W_G W_E W_W W_S W_G W_E W_W W_S W_G W_E 

1 4 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0 0.25 0.25 0 1 1 0 1 1 0 
2 3 0.25 0.25 0.25 0.25 0 0 0 0 0 0.25 0.25 0 1 0 0 1 0 0 
3 3 0.25 0.25 0.25 0.25 0 0 0 0 0 0.25 0.25 0 1 0 0 1 0 0 
4 5 0.25 0.25 0.25 0 0 0 0 0 0 0.25 0.25 0 1 0 0 0.75 0 0 
5 5 0 0.25 0.25 0.25 0 0.25 0.25 0.25 0 0 0 0 1 1 0 0.75 0.75 0 
6 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
7 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
8 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
9 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
10 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Number of 

People 
40 15 20 20 15 4 9 9 9 0 15 15 0 20 9 0    

CHs  38% 50% 50% 38% 10% 23% 23% 23% 0% 37.5% 37.5% 0%       
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Table 5: Cost-effectiveness Matrix for Impact Effectiveness- Equal Weights – Union Criterion (k=0.25) – 
MaxN-LNOB vs. LNOB-MaxN 

HH# HH 
Size 

ci(k) 
t0 

Cost-Effectiveness Matrix 
Selected values under MaxN-LNOB 

Cost-Effectiveness Matrix 
Selected values under LNOB-MaxN 

CE_W CE_S CE_G CE_E CE_W CE_S CE_G CE_E 
1 4 1 31.3 10.9 27.8 62.5 31.3 10.9 27.8 62.5 
2 3 1 23.4 8.2 20.8 46.9 23.4 8.2 20.8 46.9 
3 3 1 23.4 8.2 20.8 46.9 23.4 8.2 20.8 46.9 
4 5 0.75 39.1 13.6 34.7 0.0 39.1 13.6 34.7 0.0 
5 5 0.75 0.0 13.6 34.7 78.1 0.0 13.6 34.7 78.1 
6 5 0.5 0.0 13.6 0.0 78.1 0.0 13.6 0.0 78.1 
7 2 0.5 15.6 5.4 0.0 0.0 15.6 5.4 0.0 0.0 
8 7 0.25 0.0 19.0 0.0 0.0 0.0 19.0 0.0 0.0 
9 3 0.25 0.0 0.0 20.8 0.0 0.0 0.0 20.8 0.0 
10 3 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Note: Values of the CE matrix have been multiplied by 1,000,000 to facilitate the visualization. 
 
Table 6: Cost-effectiveness Matrix for Impact Effectiveness- Equal Weights – Intermediate Criterion (k=0.75)  

MaxN-LNOB  

HH
# 

HH 
Size 

ci(k) 
t0 

MaxN-LNOB 
ITERATION 1 

MaxN-LNOB 
ITERATION 2 

MaxN-LNOB 
ITERATION 3 

   W_A W_S W_G W_E W_A W_S W_G W_E W_A W_S W_G W_E 

1 4 1 31.3 10.9 27.8 62.5 31.3 10.9 27.8 62.5 93.8 24.5 83.3 0 
2 3 1 23.4 8.2 20.8 46.9 23.4 8.2 20.8 46.9 70.3 24.5 62.5 0 
3 3 1 23.4 8.2 20.8 46.9 23.4 8.2 20.8 46.9 70.3 24.5 62.5 0 
4 5 0.75 117.2 40.8 104.2 0.0 0 0 0 0 0 0 0 0 
5 5 0.75 0 40.8 104.2 234.4 0 0 0 0 0 0 0 0 
6 5 0.5 0 0 0 0 0 0 0 0 0 0 0 0 
7 2 0.5 0 0 0 0 0 0 0 0 0 0 0 0 
8 7 0.25 0 0 0 0 0 0 0 0 0 0 0 0 
9 3 0.25 0 0 0 0 0 0 0 0 0 0 0 0 
10 3 0 0 0 0 0 0 0 0 0 0 0 0 0 
   Cost=400+800=$1200 Cost=1200+3*400=$2400 Cost=2400+3*800=$4800 

 
 

Figure 1: Complementary Cumulative Distribution Functions for MaxN-LNOB and LNOB-MaxN optimal 
distributions computed under the uncensored distributions – Equal Weights 
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Figure 2: The Adjusted Headcount Ratio Dominance Curves for MaxN-LNOB and LNOB-MaxN optimal 
distributions computed under the uncensored distributions - Equal Weights 

 
 

Table 7: Impact Effectiveness Indicators under different poverty cutoffs –  
Equal Weights- MaxN-LNOB vs. LNOB-MaxN 

 
Distribution 

 Union criterion Intermediate criterion 
 H 

(k=0.25) 
A 

(k=0.25) 
MPI 

(k=0.25) 
H 

(k=0.75) 
A 

(k=0.75) 
MPI 

(k=0.75) 
𝑡- Poverty Measures 0.925 0.635 0.588 0.50 0.875 0.438 
𝑡/ Poverty Measures 0.875 0.486 0.425 0.225 0.861 0.194 

Observed poverty reduction 0.05 0.149 0.163 0.275 0.014 0.244 
Observed spent budget $6900 $6900 

Optimal MaxN-LNOB 
(over uncensored 

distribution) 

Poverty Measures 0.925 
 
 

0.345 
 
 

0.319 
 
 

0.15 
 
 

0.75 
 
 

0.112 
 
 

Poverty Reduction 
(𝑡- − 𝑂𝑝𝑡𝑖𝑚𝑎𝑙) 0 0.291 0.269 0.35 0.125 0.326 

Budget $6300 $6300 
IEMPI 0.163/0.269=61% 0.244/0.326=75% 

Optimal LNOB-MaxN 
(over uncensored 

distribution) 

Poverty Measures 0.925 
 
 

0.351 
 
 

0.325 
 
 

0 0 0 

Poverty Reduction 
(𝑡- − 𝑂𝑝𝑡𝑖𝑚𝑎𝑙) 

0 0.284 0.263 0.500 0.875 0.438 

Budget $6900  $6900  

IEMPI 0.163/0.263=62% 0.244/0.438=56% 
Optimal MaxN-LNOB 

(over censored 
distribution) 

Poverty Measures 

NA 

0 0 0 
Poverty Reduction 

(𝑡- − 𝑂𝑝𝑡𝑖𝑚𝑎𝑙) 
0.500 0.875 0.438 

Budget $4800 

IEMPI 0.244/0.438=56% 
Optimal LNOB-MaxN 

(over censored 
distribution) 

Poverty Measures 

NA 

0 0 0 
Poverty Reduction 

(𝑡- − 𝑂𝑝𝑡𝑖𝑚𝑎𝑙) 
0.500 0.875 0.438 

Budget $4800 

IEMPI 0.244/0.438=56% 
NA: Non-applicable. 
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5.1.2 Spending Effectiveness under different optimal criteria and different poverty cutoffs 

Given the same initial and final deprivation matrices presented in Section Error! Reference 
source not found., as well as the same weighting scheme and the same per household 
costs, we now want to know what would have been the minimum amount of fiscal effort 𝐵 
to achieve at least the same poverty reduction as the one observed. The matrices associated 
to this exercise are detailed in Table 8 for the case of the union poverty cutoff and in Table 9 
for the case of a k=0.75. 
 
With a union poverty cutoff, the poverty reduction target is the observed 0.163, which 
costed $6,900. The optimal distribution under the MaxN-LNOB criterion indicates that a 
slightly higher reduction, of 0.181,  could have been achieved with a budget of $3600, if 
deprivations had been lifted in this way: remove deprivation in electricity (the most cost-
effective dimension in this case) in five households in total, two of 5 members, one of 4 
members and two of 3 members; remove deprivation in water (the second most cost-
effective dimension) to one household of 5 members and one  household of 4 members. As 
detailed in Table 10, with this benchmark, spending effectiveness is only 52%: the same and 
even higher MPI reduction could have been achieved with about half of the spent budget.1 
Naturally, in this example, this is because the budget in the optimal allocation is 
concentrated in the most cost-effective indicators, whereas in the observed one, some 
deprivations in sanitation -the most expensive dimension- were lifted. Note however, that if 
sanitation was a highly valued dimension, despite being the most expensive deprivation to 
lift, this could be accounted for in the weighting of the MPI indicators, and the ‘cost-
effectiveness’ of removing this deprivation would change.  
 
If we now consider the optimal allocation under the LNOB-MAxN criterion, we can see that 
the same poverty reduction of 0.169 is achieved with a budget of $4,000, higher than the 
one used with the MaxN-LNOB criterion. The distribution is as follows: the most cost-
effective dimension (electricity) is lifted to the three poorest households, and then to 
household #5 with a deprivation score of 0.75 (the poorest after removing the first three 
deprivations). Next, deprivation in water is lifted to household#4 and household #1, with a 
score of 0.75 and of the biggest size among the poorest and deprived in water. Finally, 
deprivation in water is lifted to household #2, also with a score of 0.75, and of the biggest 
size among the deprived in that dimension. Note that this poverty reduction is lower than 
the one achieved with the MaxN-LNOB criterion and yet more expensive. This is because 
LNOB-MaxN prioritizes reducing the deprivations in the households with the highest 
deprivation scores in the first place, and not necessarily the biggest ones. As the minimum 
budget under the LNOB-MaxN optimal distribution is higher than under the MaxN-LNOB 

 
1 This is an example of a case in which the algorithm that operationalizes the MaxN-LNOB criterion in a 
reasonable computing time may produce a suboptimal allocation. In fact, poverty could be reduced in 0.169 if 
deprivation in electricity was lifted to households #1, #2, #4 and #5, and deprivation in water and gas was 
lifted to household #4, with a budget of $3300. This occurs because the algorithm proceeds one iteration at a 
time and decides in each iteration the optimal value. But as it approaches the end (i.e. as it is reaching the 
poverty reduction target in SE, and the budget in IE), better options may arise if the algorithm could evaluate 
two iterations forward, for example. Similar cases may arise for impact effectiveness and for the LNOB-MaxN 
criterion. However, as explained at the end of Section 0,  the occurrence of suboptimal allocations is unlikely 
to have incidence in real data applications with big population sizes. 
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one, spending effectiveness evaluated under the LNOB-MaxN criterion is also higher (58%) 
(Table 10). 
 
As detailed in Table 9, the MaxN-LNOB and the LNOB-MaxN optimal distributions for 
spending effectiveness computed over the censored distribution with k=0.75 coincide in this 
case (but this need not always be the case for high poverty cutoffs). The poverty reduction 
target with this poverty cutoff is 0.244. The achieved reduction under the optimal 
distributions is 0.250, with a budget of $2400. In such case, spending effectiveness is 
evaluated to be of only 35% (see Table 10). That is, if focused on the poorest poor, an MPI 
reduction of 0.244 could have been achieved with only 35% of the spent budget. 
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Table 8: Spending Effectiveness – Equal Weights – Union Criterion (k=0.25) – MaxN-LNOB vs. LNOB-MaxN 

HH# HH 
Size 

Weighted deprivations t0 Weighted deprivations t1 Weighted deprivations 
Optimal MaxN-LNOB 

Weighted deprivations 
Optimal LNOB- MaxN 

P 
t0 

P 
t1 

P 
M
N-
LN 

P 
LN-
M
N 

ci(k) 
t0 

ci(k) 
t1 

ci(k) 
MaxN-
LNOB 

ci(k) 
LNOB-
MaxN W_W W_S W_G W_E W_W W_S W_G W_E W_W W_S W_G W_E W_W W_S W_G W_E 

1 4 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0 0.25 0.25 0 0 0.25 0.25 0 1 1 1 1 1 1 0.75 0.5 
2 3 0.25 0.25 0.25 0.25 0.25 0.25 0 0 0.25 0.25 0.25 0 0 0.25 0.25 0 1 1 1 1 1 0.5 0.75 0.5 
3 3 0.25 0.25 0.25 0.25 0.25 0.25 0 0 0.25 0.25 0.25 0 0.25 0.25 0.25 0 1 1 1 1 1 0.5 1 0.75 
4 5 0.25 0.25 0.25 0 0 0.25 0.25 0 0 0.25 0.25 0 0 0.25 0.25 0 1 1 1 1 0.75 0.5 0.25 0.5 
5 5 0 0.25 0.25 0.25 0 0.25 0.25 0.25 0 0.25 0.25 0 0 0.25 0.25 0 1 1 1 1 0.75 0.75 0.5 0.5 
6 5 0 0.25 0 0.25 0 0.25 0 0 0 0.25 0 0 0 0.25 0 0.25 1 1 1 1 0.5 0.25 0.25 0.5 
7 2 0.25 0.25 0 0 0 0 0 0 0.25 0.25 0 0 0.25 0.25 0 0 1 0 1 1 0.5 0 0.5 0.5 
8 7 0 0.25 0 0 0 0.25 0 0 0 0.25 0 0 0 0.25 0 0 1 1 1 1 0.25 0.25 0.25 0.25 
9 3 0 0 0.25 0 0 0 0.25 0 0 0 0.25 0 0 0 0.25 0 1 1 1 1 0.25 0.25 0.25 0.25 
10 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Number 

of People 
40 17 34 23 20 10 32 17 9 12 34 18 3 8 34 20 5 37 35 37 37     

Censored 
HRs 

 43% 85% 58% 50% 25% 80% 43% 23% 30% 85% 45% 8% 20% 85% 50% 13%         

 
Table 9: Spending Effectiveness – Equal Weights – Intermediate Criterion (k=0.75) – MaxN-LNOB vs. LNOB-MaxN 

HH# HH 
Size 

Censored 
Weighted deprivations t0 

Censored 
Weighted deprivations t1 

Censored 
Weighted deprivations  
Optimal MaxN-LNOB= 
=Optimal LNOB-MaxN 

P 
t0 

P 
t1 

P 
MN-LN= 
LN-MN 

ci(k) 
t0 

ci(k) 
t1 

ci(k) 
MaxN-
LNOB= 
LNOB-
MaxN W_W W_S W_G W_E W_W W_S W_G W_E W_W W_S W_G W_E 

1 4 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0 1 1 1 1 1 0.75 
2 3 0.25 0.25 0.25 0.25 0 0 0 0 0.25 0.25 0.25 0 1 0 1 1 0 0.75 
3 3 0.25 0.25 0.25 0.25 0 0 0 0 0.25 0.25 0.25 0 1 0 1 1 0 0.75 
4 5 0.25 0.25 0.25 0 0 0 0 0 0 0.25 0.25 0 1 0 0 0.75 0 0 
5 5 0 0.25 0.25 0.25 0 0.25 0.25 0.25 0 0.25 0.25 0 1 1 0 0.75 0.75 0 
6 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
7 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
8 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
9 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

10 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Number of People 40 15 20 20 15 4 9 9 9 10 20 20 0 20 9 10    

Censored HRs  38% 50% 50% 38% 10% 23% 23% 23% 25% 50% 50% 0%       
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Table 10: Spending Effectiveness Indicators under different poverty cutoffs –  
Equal Weights- MaxN-LNOB vs. LNOB-MaxN 

  Union criterion Intermediate criterion 
Distribution  H 

(k=0.25) 
A 

(k=0.25) 
MPI 

(k=0.25) 
H 

(k=0.75) 
A 

(k=0.75) 
MPI 

(k=0.75) 
𝑡- Poverty Measures 0.925 0.635 0.588 0.50 0.875 0.438 
𝑡/ Poverty Measures 0.875 0.486 0.425 0.225 0.861 0.194 

Observed poverty reduction 
(TARGET) 0.05 0.149 0.163 0.275 0.014 0.244 

Observed spent budget $6900 $6900 
 

Optimal MaxN-
LNOB 

(over uncensored 
distribution) 

Poverty Measures 0.925 
 

0.453 
 

0.419 
 

NA 

Poverty Reduction 
(𝑡- − 𝑂𝑝𝑡𝑖𝑚𝑎𝑙) 0 0.182 0.181 

Minimum Budget $3600 

𝑺𝑬𝑴𝑷𝑰 3300/6900=52% 

Optimal LNOB-
MaxN 

(over uncensored 
distribution) 

Poverty Measures 0.925 
 

0.453 
 

0.419 
 

NA 
Poverty Reduction 

(𝑡- − 𝑂𝑝𝑡𝑖𝑚𝑎𝑙) 
0 0.182 0.169 

Minimum Budget $4000 
𝑺𝑬𝑴𝑷𝑰 4000/6900=58% 

Optimal MaxN-
LNOB 

(over censored 
distribution) 

Poverty Measures 

NA 

0.250 
 

0.750 
 

0.188 
 

Poverty Reduction 
(𝑡- − 𝑂𝑝𝑡𝑖𝑚𝑎𝑙) 

0.250 0.125 0.250 

Minimum Budget $2400 
𝑺𝑬𝑴𝑷𝑰 2400/6900=35% 

Optimal LNOB-
MaxN 

(over censored 
distribution) 

Poverty Measures 

NA 
 

0 0 0 
Poverty Reduction 

(𝑡- − 𝑂𝑝𝑡𝑖𝑚𝑎𝑙) 
0.250 0.125 0.250 

Minimum Budget $2400 
𝑺𝑬𝑴𝑷𝑰 2400/6900=35% 

NA: Non-applicable. 
 
5.2 Examples on the marginal contribution indicator with union and intermediate 

poverty cutoffs 
As detailed in Section 4.2, the change in the censored headcount ratio of each 𝑗 dimension 
can be interpreted as a marginal contribution indicator to poverty reduction. Continuing 
with the same example, Table 11 presents the censored headcount ratios with a union 
poverty cutoff 𝑘 = 0.25, which coincide with the uncensored headcount ratios, and with an 
intermediate poverty cutoff of 𝑘 = 0.7, at the initial and final moment. Neatly, the weighted 
sum of the change in the four censored headcount ratios equals the total change in 𝑀). 
Thus, the ratio of the weighted change in each censored headcount ratio to the total change 
in 𝑀) can be interpreted as the marginal contribution of dimension 𝑗 to poverty reduction. 
In this example, with the union poverty cutoff we see that the dimension that contributed 
the most to multidimensional poverty reduction has been electricity (42.3%), followed by 
water (26.9%), gas (23.1%), and in fourth place, sanitation (7.7%).  
The same analysis can be done if an intermediate poverty cutoff is used, such as 𝑘 = 0.75. 
Note however, that in that case, electricity appears as the dimension contributing the least 
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to poverty reduction, and the reduction in deprivation in water appears as contributing the 
same as the reduction in deprivations in sanitation and gas. However, as it can be seen from 
the exercise with the union poverty cutoff, i.e., the reductions of the uncensored headcount 
ratios, electricity and water were the ones with the biggest reductions. Moreover, 
comparing the uncensored initial and final distributions detailed in Table 4, one can see that 
the removal of deprivations in electricity and water led household #4, #2 and #3 to reduce 
their deprivation score below 0.75, that is, to being lifted out from multidimensional 
poverty. Because of this, their remaining deprivations are not counted any longer (i.e. are 
censored) and thus they do not ‘appear’ in the numerator of the other censored headcount 
ratios, magnifying the reduction in these other headcount ratios. For this reason, and 
especially considering that we aim at evaluating the effectiveness of the fiscal effort in 
reducing non-monetary deprivations, it seems recommendable to use a union criterion for 
the evaluation of the marginal contributions or, alternatively, to consider the changes in the 
censored headcount ratios alongside the changes in the uncensored headcount ratios.1 
 

Table 11: Dimensional Marginal contributions – Observed and hypothetical ones- Equal Weights 

 Poverty cutoff 𝑀- 𝐶𝐻BC3DE 𝐶𝐻FCGH3C3HIG 𝐶𝐻JCF 𝐶𝐻DKDL3EHLH3M 
𝑡-  

k=0.25 (union) 
0.588 0.43 0.85 0.58 0.50 

𝑡/ 0.425 0.25 0.80 0.43 0.23 
𝐶ℎ𝑎𝑛𝑔𝑒 0.163 0.18 0.05 0.15 0.28 
𝑀𝐶5NOP  26.9% 7.7% 23.1% 42.3% 
𝑡-  

k=0.75 
(intermediate) 

0.438 0.38 0.50 0.50 0.38 
𝑡/ 0.194 0.10 0.23 0.23 0.23 

𝐶ℎ𝑎𝑛𝑔𝑒 0.244 0.28 0.28 0.28 0.15 
𝑀𝐶5NOP  28.2% 28.2% 28.2% 15.4% 

MaxN-LNOB  
k=0.25 (union) 

0.319 0.20 0.85 0.23 0 
𝐶ℎ𝑎𝑛𝑔𝑒	 

(𝑡! −𝑀𝐴𝑥𝑁 − 𝐿𝑁𝑂𝐵) 
 
0.269 

 
0.22 

 
0 

 
0.35 

 
0.50 

𝑀𝐶5NOP  21.0% 0% 32.5% 46.4% 
LNOB-MaxN  

k=0.25 (union) 
0.325 0 0.85 0.45 0 

𝐶ℎ𝑎𝑛𝑔𝑒 
(𝑡! − 𝐿𝑁𝑂𝐵 −𝑀𝑎𝑥𝑁) 

 
0.263 

 
0.43 

 
0 

 
0.13 

 
0.50 

𝑀𝐶5NOP  40.4% 0% 11.9% 47.5% 
Note: Percent contributions may not add exactly to 100% due to rounding. CH: censored headcount ratio. 
 
Interestingly, the observed dimensional marginal contributions can be compared to those 
that would have resulted if the optimal distributions had been achieved, which is 
exemplified for the case of the union approach in the last two blocks of rows of Table 11. 
For instance, both under the MaxN-LNOB and the LNOB-MaxN optimal distributions, the 
contribution of the reduction of deprivations in electricity would have been the greatest to 
overall poverty reduction (46.4% and 47.5% correspondingly), but in the MaxN-LNOB 
distribution this would have been followed by reducing deprivations in natural gas 
(contributing with 32.5% to poverty reduction), whereas in the LNOB-MaxN distribution this 
would have been followed by reductions in deprivations in water (contributing with 40.4% 
to poverty reduction). 

 
1 See also Seth and Alkire (2015). 
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6 A brief note on reranking 

Up to this point we have not addressed the fact that, as a result of the fiscal intervention, 
households may change their relative position in the distribution of deprivation scores, that 
is, there might be reranking. In the income space, “the definition of horizontal equity 
postulates that the pre-fiscal policy income ranking should be preserved (Duclos and Araar, 
2006). In other words, if individual A was poorer than individual B before the fiscal 
interventions, individual A should continue to be poorer than individual B after the 
interventions.” In fact, “…reranking is interpreted as a measure of fiscally induced horizontal 
inequality.” (Lustig et al., 2018, p. 11-12). 
 
Taken to the multidimensional context, this principle would imply that when constructing 
the optimal distributions -by any criterion- the original ranking of deprivation scores should 
be preserved. However, because of the indivisibilities detailed in Section 0, preserving the 
original ranking may not always be possible. The removal of deprivations produces 
indivisible reductions in deprivation scores that inevitably affect the ranking. This can be 
noticed in the examples of Section 5, comparing the columns of the censored deprivation 
scores. For instance, in the example of Table 3, households #2 and #3 have an initial 
deprivation score of 0.75, among the poorest, yet in the optimal LNOB-MaxN allocation, 
household #2  ends with a deprivation score of 0.25, in a better position than household #3, 
which ends with a deprivation score of 0.5. While it seems difficult to always comply with 
the horizontal equity principle in the multidimensional case, it must however be noted, that 
no one is made worse-off in absolute terms under any of the alternative optimal allocations. 
 

7 Implementing the methodology with real data 

The indicators proposed in this paper can be implemented with real data for two purposes. 
In the first place they can be implemented as an ex-post evaluation of the fiscal action. 
Second, they can be implemented ex-ante, as a government programmatic way to reduce 
multidimensional poverty. In this section we first explain how to deal with two technical 
issues when using real data, and then we detail the key pieces of information that are 
required for each kind of real-world implementations. 
 
7.1 Dealing with population growth 
In the proposed methodology we are considering the deprivation matrix in 𝑡) as the pre-
fiscal matrix of the deprivation matrix in 𝑡(. Until now we have assumed that the population 
of the deprivation matrices in 𝑡) and 𝑡( are the same, as well as the households’ 
configurations, as if we had panel data. However, this methodology is intended to be 
implemented using repeated cross-sectional data. We have already detailed how to 
incorporate survey weights in the generation of the optimal distributions. Yet one further 
issue to consider is that, naturally, there will be population growth over time. Population 
growth affects the costing of poverty reduction. Reducing the MPI in “x” percent points is 
more costly if there is population growth than if there is not, as more households will have 
to be connected to services. Population growth can be easily incorporated through the 
survey weight variable.  
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To evaluate the fiscal effort done in reducing multidimensional poverty between 𝑡) and 𝑡(, 
the relevant population size to consider is 𝑛(, as that is the population over which MPI is 
computed in the final observation. One can compute the population growth between 𝑡) and 
𝑡( and expand the survey weight variable in 𝑡), 𝑝#!# , by the population growth between 𝑡) 
and 𝑡( (𝑛9 = (𝑛( − 𝑛))/𝑛)): 
 

𝑝#!#
s = 𝑝#!#(1 + 𝑛9) 

 
By definition, ∑ 𝑠#𝑝#!#

s+#
#'( = 𝑛( = ∑ 𝑠#𝑝#!)

+)
#'( . The optimizing algorithms should then be 

implemented over the initial deprivation matrix 𝒈!#
) ,	but using the expanded survey weights 

𝑝#!#
s . By the replication invariance property, all the deprivation and poverty rates will remain 

unchanged using these expanded survey weights. In this way, the algorithm is implemented 
over the same deprivation and poverty metrics that a policy maker observes in 𝑡), but 
considering that the population will be that of 𝑡( by the time investments in removing 
deprivations are finalized. 
 
There is, however, one limitation of proceeding in this way, which is that it assumes that all 
households, of different sizes, increase in the same proportion given by the population 
growth-rate. This may not always hold as households may tend to become smaller over 
time. That is, it is very likely that the number of households grows more than the 
population. Given that the costing of lifting deprivations is at the household level, the 
proposed procedure could overestimate the potential for poverty reduction that the 
observed budget could achieve if optimally allocated. At the same time, it is also worth 
noting that poor households, which in general tend to be bigger, may not register 
substantial reductions in their average size, at least in relatively short periods of time. In 
such case, applying the homogeneous population growth rate across households’ sizes may 
not be that problematic in practice. 
 
An alternative option would be to compute the growth rate in the number of households of 
each size and expand the survey weight variable of each household-size type according to 
its specific growth rate. However, this would not satisfy the replication invariance axiom, 
and thus the deprivation rates, H, A and MPI of the 𝒈!#

)  using such differentially expanded 
survey weights would differ from the observed ones using the original survey weights 𝑝#!# ; 
that is, these measures would not reflect the information handled by a policy maker at the 
starting point and thus this option does not seem advisable.  
 
7.2 Data requirements for implementing the methodology as an ex-post evaluation of 

the fiscal action 
If the methodology is implemented as an ex-post evaluation of the fiscal action one needs 
to define several issues simultaneously and interconnectedly: the indicators over which the 
fiscal action will be evaluated, the period for the evaluation, the availability of microdata for 
that period and the indicators that will be considered. The selection of indicators is not 
trivial. As argued earlier, the selected indicators need to be such that reductions in their 
deprivation rates can be reasonably attributed to the fiscal action.  
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For the effectiveness analysis two cross-section household survey data, at the initial and 
final point in time -the 𝑡) and 𝑡( moment, are required. For certain analysis, microdata from 
censuses could be convenient, as it covers all areas in a country and offers disaggregated 
level data, which household surveys do not. The drawback is that it is usually only collected 
every ten years.  
 
Once the period, indicators and data sources have been decided, it is fundamental to have 
two additional pieces of information for the fiscal analysis: a) estimates of the cost of 
removing each deprivation under consideration, b) information on the public spending on 
those items over the period under study. While this kind of information should be available, 
it may be not so straightforward to find or obtain.  
 
The provision of public services varies greatly across countries, from regulated private 
companies to public ones, with mixed ownership in between, and -very frequently- with 
different companies supplying different areas of a country. Thus, obtaining information on 
the cost of removing deprivation in services such as water, sewage sanitation, gas or 
electricity, may require investing some considerable time and resources. In most countries, 
there is a government department that collects that information, although it is not always 
readily available.2 As mentioned in Section 4.3.1, most likely, there will be geographical 
variation of such costs.  
 
The information on the public spending done in each area under analysis over the study 
period is relatively easier to obtain. Note, however, that for a proper assessment of 
effectiveness, this information should have the greatest level of disaggregation as possible, 
both in terms of the spending items (capital investments, operation or maintenance) as well 
as in terms of the geographical areas where this spending was allocated.  
 
Finally, an important normative decision is the weighting scheme to implement in the MPI, 
as it directly determines the cost-effectiveness of removing each deprivation. Clearly, the 
weighting scheme needs to be properly justified. In any case, it is advisable that a 
robustness analysis is performed within a certain reasonable range of weights. 
 
With this information, alongside the proposed procedure to deal with population growth, 
the optimal distributions under the alternative optimal criteria MaxN-LNOB and LNOB-MaxN 
can be computed, and thus the 𝐼𝐸1/ and 𝑆𝐸1/ indicators can be calculated. The 
dimensional marginal contributions to poverty reduction can also be computed and 
contrasted with those that would emerge from the optimal allocations.  
 
7.3 Data requirements for implementing the methodology as an ex-ante poverty 

reduction government program 
Alternatively, a government may want to intervene in reducing multidimensional poverty 
and seek for the most cost-effective way to accomplish that. In such case, the optimal 
distributions under the MaxN-LNOB or the LNOB-MaxN criteria can be a guide. In particular, 
if the aim is to help the poorest poor, the LNOB-MaxN criterion should be implemented. 

 
2 Despite data limitations and diverse technical complexities, Hutton and Varughese (2016) offer global costing 
estimates of extending water, sanitation and hygiene (WASH) services to meet the 6th SDG.  
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When implementing this analysis ex-ante, one needs microdata on the indicators on which 
the government plans to take action. In this case data at the starting point 𝑡) will serve both 
as a diagnosis of the initial state of deprivations, as well as the basis for planning the 
intervention. To cost and compute the optimal distribution under any of the two criteria, 
the government will have to consider the population projection for the target year, such 
that population growth can be factored in the budget as detailed in Section 7.1.  
 
The information on the costing of the services on which the government wants to expand 
access will naturally also be needed, as in the ex-post case, as well as the intended budget 
for this poverty reduction programme. Note that depending on the results of the 
effectiveness analysis, it may happen that the relative allocation of funds across different 
ministries changes, which will require political negotiation. One more time, the weighting of 
the indicators will have to be transparently decided upfront.3 
 
7.4 Assessing by geographical areas and decomposing by population subgroups 
The proposed methodology assesses whether a certain public spending for expanding 
households’ access in different dimensions was allocated in the best way across dimensions 
and households. Throughout the paper we have referred to the case of expanding access to 
public services as natural candidates for the multidimensional measure to consider. In 
consequence, to seek plausible optimal allocations, it is advisable that the proposed 
algorithms are implemented by areas within a country, which can be regions, provinces, or 
municipalities, depending on their extension. The prioritization of them within a country can 
follow different criteria, with the MPI value being an obvious strong candidate. 
 
Additionally, both for an ex-post or an ex-ante implementation of the methodology, 
decompositions across population subgroups, such as mono-parental-female headed 
households vs. biparental households, vs. households with no children can be incorporated, 
as the MPI is fully decomposable.  
 
7.5 Considering a more comprehensive MPI 
The assessment of impact and spending effectiveness on a few indicators, such as access to 
public services, on which there has been a fiscal effort to reduce deprivation can be 
implemented within a broader MPI, one that considers other key poverty dimensions. In 
fact, many countries now have a national MPI and may want to assess the fiscal effort done 
on a subgroup of indicators but keeping the complete national MPI as the metric (which 
may include nutrition, education or employment, for example). In such case, the 
methodology can be implemented with the following considerations. The observed change 
in the MPI, which is the denominator of the  𝐼𝐸1/ indicator and the target for the 𝑆𝐸1/ 
indicator, would only need to consider the change in the indicators that are under scrutiny, 
i.e. those reduced by the fiscal effort. However, note that both optimal criteria, MaxN-LNOB 
as well as LNOB-MaxN, would rank the households by their initial full MPI value. 
 

 
3 See the discussion in Barbieri and Higgins (2015) about the setting of the MPI’s indicators weights from a 
political economy point of view. 
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8 Concluding remarks 

In this paper we proposed analogue indicators of CEQ’s fiscal incidence indicators for the 
case of multidimensional poverty under the AF measurement framework using the 𝑀) 
measure, with which a Multidimensional Poverty Index (MPI) can be defined. We have 
proposed an impact and a spending effectiveness indicator which can be implemented using 
cross-sectional household survey (or census) data at two points in time, alongside 
information on the cost of removing each deprivation at the household level, and 
information on the public spending the government has allocated or plans to allocate to the 
dimensions under analysis. We have also noted that changes in the censored headcount 
ratios (associated to the 𝑀) measure) expressed as a proportion of total change in poverty 
can be interpreted as an observed dimensional marginal contribution indicator, which in 
turn can be compared to the ones that emerge from the optimal allocations. 
 
In the methodology presented here, poverty is identified at the household level and 
deprivations are also lifted at the household level, with per household costs associated to 
removing each considered deprivation. However, poverty is computed in population terms. 
This brings one tension: whether the optimal distribution to be considered for the impact 
and spending effectiveness indicators should prioritize reducing poverty to the biggest 
number, what we have named the MaxN-LNOB criterion, or rather to the poorest poor, 
what we have named the LNOB-MaxN criterion (LNOB for “Leave No One Behind”), a 
prioritarianism criterion. The first optimal criterion will produce a reduction of the MPI 
always equal or greater than the second criterion, but it may leave the poorest poor just as 
they were at the beginning. We consider that the LNOB-MaxN criterion truly embodies the 
2030 Development Agenda as well as a more sensible ethical principle and should thus be 
preferred over the MaxN-LNOB one. We recommend implementing the LNOB-MaxN 
optimization algorithm over the uncensored distribution of deprivations and evaluating 
impact effectiveness using alternative poverty cutoffs, from highest to lowest, to elucidate 
which poverty-intensity groups have been privileged by the fiscal effort. Interestingly 
however, if poverty is identified at the individual level or if household sizes are ignored, the 
two criteria coincide. 
 
Throughout the paper we have referred to the case of expanding access to public services as 
natural candidates for the multidimensional measure to consider. In such case, it is 
advisable that the proposed algorithms are implemented by areas within a country, which 
can be regions, provinces, or municipalities, depending on their extension. Their 
prioritization within a country can follow different criteria. While the MPI value is an 
obvious strong candidate, other options, such as the number of multidimensionally poor 
people may be justifiable.  
 
The proposed indicators can be implemented ex-post, as an assessment of the effectiveness 
of certain areas of public spending over a certain period, but also ex-ante, to guide a poverty 
reduction program. Decompositions across relevant population subgroups can be 
incorporated, as the MPI is fully decomposable. While the methodological requirement of 
information on the costing of removing deprivation in certain fundamental dimensions of 
wellbeing such as access to basic services can be challenging, it is not impossible, and the 
payoff of a more effective allocation of the fiscal budget for poverty reduction surely 
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outweighs the difficulties of assembling such data. We hope this methodology can be useful 
for a better targeting of the policy aimed at reducing poverty in its many dimensions, 
contributing in this way to the achievement of the first SDG and related ones. 
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