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Abstract
If Economics is understood as the study of the interactions among intentional

agents, being rationality the main source of intentional behavior, the mathematical
tools that it requires must be extended to capture systemic effects. Here we choose
an alternative toolbox based on Category Theory. We examine potential level-agnostic
formalisms, presenting three categories, PR, G and an encompassing one, PR− G.
The latter allows for representing dynamic rearrangements of the interactions among
different agents.

1 Introduction

It is hard to define with precision the actual scope of Economics. Perhaps the best-known
definition was given by Lionel Robbins (1932):

Economics is the science which studies human behavior as a relationship between
ends and scarce means which have alternative uses.

While widely accepted, this characterization is unsatisfactory in many ways. In particu-
lar, for not taking into account crucial developments that reshaped the discipline in the
last nine decades.

Accordingly, a more general definition could be

Economics studies the interaction among intentional entities.

This summarizes most if not all the research activities of contemporary economists. The
term “entity”, which is introduced to refer to firms, institutions, and other non-human
economic agents, covers the extension of economic analyses to all kinds of things able to
exhibit agency, ranging from social groups to robots.1

1No wonder that other social scientists think that Economics is an “imperialist” discipline!
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This extended notion of Economics, has been formalized in a rather narrower sense, us-
ing tools ranging from Calculus and Linear Algebra to Functional Analysis and Algebraic
Topology. Modern Economic Theory as well as a good deal of Econometrics have been
shaped using methods drawn from those fields. But the full meaning of the alternative
characterization given above can only be captured by conceiving Economics as a system
composed of other systems. While contemporary disciplines like Computer Science have
fully embraced this view, economists have been reluctant to adopt it.

In this contribution we explore possible formalisms that may support the development
of tools for an extended conception of Economics. While this is a wide-ranging project,
we consider here two issues:

• How to deal with the complications inherent in attempts to sever different “local”
interactions as if all the others remained fixed.

• How to scale up the solutions with the aggregation of the problems of interest.

Both issues reveal the need for a level-agnostic (or continuous with respect to subagents) Eco-
nomic Theory. This paper lays the ground for a such model. We start by noting that
Economics has a well-defined notion of agent defined in terms of a given preference re-
lation over the space of alternatives. Then, the agent is said rational if she chooses the
most preferred alternatives among those that are feasible for her.

In applications, it is customary to reduce the analysis to a subspace of the space of al-
ternatives, simplifying the problem of making a decision. But this comes at the price of
assuming the independence of the preferences over the subspace from the preferences
over the rest of the larger space of alternatives.

In this initial version we first present a way of ensuring the consistency of the solutions
found for the different subspaces. Then, another approach to the coordination of inde-
pendent context is given, in this case involving games with shared players.

The final part of this paper presents a generalization, integrating both models, in which
interactions are no longer fixed, but can evolve according to the inputs and outputs. In
this as well as in the previous two models we apply the mathematical framework of
Category Theory ([19]).
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2 Mathematical Preliminaries

As is well-known, Category Theory has provided a framework without which most of
the contemporary results in both Algebraic Geometry and Topology would not have
been found [10]. As repeatedly shown in actual mathematical practice, the language
of Set Theory remains insufficient for capturing perspicuously the nuances prevalent in
those fields [14]. One reason is that unlike Set Theory the categorical approach allows
for both the maximization of the “external” scope of its formal results and the controlled
“internal” sensitivity to particular differences in content within the representation of
mathematical structures. While Category Theory might thereby also seem to be a natu-
ral choice of a formal language for representing the decision-making problems outlined
above, we have to note that Economics has been reluctant to adopt it.2

In this paper we draw heavily on the literature on Category Theory, although our re-
sults are clearly elementary. We will now present the basic concepts that will be used in
subsequent sections. For further details and clarification, see the excellent presentations
of Goldblatt ([9]), Barr & Wells ([3]), Adámek et al. ([2]), Lawvere and Shanuel ([12]),
Spivak ([18]), Fong and Spivak ([6]), Southwell ([17]) or Cheng ([4]).

A category C consists of a set of objects, Obj and a class of morphisms between pairs of
objects. Given two objects a, b ∈ Obj a morphism f between them is notated f : a → b.
Given another object c and a morphism g : b → c, we have that f and g can be com-
posed, yielding g ◦ f : a → c (COMPOSITION). Additionally, for every a ∈ Obj, there
exists an identity morphism, Ida : a → a. Morphisms are required to obey two rules: (i)
if f : a → b, f ◦ Ida = f and Idb ◦ f = f (IDENTITY); (ii) given f : a → b, g : b → c and
h : c→ d, (h ◦ g) ◦ f = h ◦ (g ◦ f ) : a→ d (ASSOCIATIVITY).

Examples of categories are SET (the objects are sets, and the morphisms are functions
between sets), TOP (the objects are topological spaces and the morphisms continuous
functions), POrd (the objects are preorders and the morphisms are order-preserving
functions), Vec (the objects are vector spaces and the morphisms linear maps), etc.

The terseness of categories facilitates diagrammatic reasoning. A diagram in which
nodes represent objects and arrows represent morphisms allows to establish properties
of a category. Diagrams that commute, i.e. such that all different direct paths of mor-
phisms with the same start and end nodes are identified (that is, compose to a common
morphism), indicate relations similar to those that can be established by means of equa-

2Some notable exceptions are [8], [7], [1] and [16]. In turn, [5] presents arguments for the adoption of the
categorical language in Economics.
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tions.

Some of the most interesting constructions that can defined in categories are limits and
colimits (duals of limits). Any limit (or colimit) captures a universal property on a family
of diagrams with the same basic shape. This basic shape is captured by a cone, that is, an

object a and a family of arrows { f
bj
a : a → bj}j∈J , such that for any pair j, l ∈ J , if there

exists a morphism γjl : bj → bl we have that γjl ◦ f
bj
a = f bl

a (see Figure 1).

a

f
bl
a %%

f
bj
a // bj

γjl

��
bl

Figure 1: Commutative diagram

Then, given a class of cones of a given shape, a limit is an object L in this class such that
for every other cone T in the class there exists a single morphism T → L such that the
resulting combined diagram commutes. For instance, consider a family of cones of the
shape depicted in Figure 2.

a X
foo g // b

Figure 2: The limit of cones of this shape defines the product a× b

then, the limit is the product a× b and with arrows p1 and p2, the projections on the first
(a) and second (b) components, respectively. For every other cone, with “apex” X there
is a unique morphism ! : X → a× b such that f = p1◦! and g = p2◦!.

Examples of colimits are direct sums (in SET, disjoint unions) and, somewhat confusingly
called, direct limits, which in a self-contained description we will use to define global so-
lutions.

Besides capturing interesting constructions common to many fields of Mathematics, Cat-
egory Theory also provides tools for relating different categories to one another. This is
achieved by means of mappings called functors. Given two categories C and D a functor
F from C to D maps objects from C into objects of D as well as arrows from the former
to the latter category such that, if
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f : a→ b

in C, then:

F( f ) : F(a)→ F(b)

in D. Furthermore F(g ◦ f ) = F(g) ◦ F( f ) and F(Ida) = IdF(a) for every object a in C.

These functors are called covariant. Another class, that of contravariant functors, is such
that, if

f : a→ b

in C, then:

F( f ) : F(a)← F(b)

in D. Of particular interest are the contravariant functors F : C → SET (or a category
of subsets of a given set), which are called presheaves. An intuitive interpretation is that
given a morphism a → b in C, the morphism F(b) → F(a) in SET is the restriction of
the “image” under F of b over the “image” of a. Given an object a in C, F(a) is called
a section of F over a. This can be extended to any family B = {bj}j∈J of objects in C:
F(B) is the section over B. In turn, given two families B ⊆ B′ and the section over B′,
namelyF(B′) we can find its restriction over B, denoted F(B′)|B, yielding F(B).

Given a presheaf F : C → SET, consider a class of objects B in C and a cover {Kj}j∈J
(i.e. B ⊆ ⋃

j∈J Kj). Let {k j}j∈J be a sequence such that k j ∈ F(Kj) for each j ∈ J . The
presheaf F is said to be a sheaf if the following conditions are fulfilled:

• Locality: For every pair i, j ∈ J , ki|Ki∩Kj
= k j|Ki∩Kj

(i.e. the sections ai, aj coincide over
Vi ∩Vj),

• Gluing: There exists a unique b̄ ∈ F(B) such that b̄|Kj
= k j for each j ∈ J (i.e. there

exists a single object in the “image” of B that when restricted to each set in the
covering yields the section corresponding to that set).

This brief review of Category Theory provides the basic concepts necessary for the anal-
ysis to be carried out in the rest of the paper.

Other notions will be introduced in the following sections.
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3 Decision-making: Local vs. Global

The traditional characterization of decision-making under certainty by an individual is
as follows. Let Li be a space of possible options that an agent i may select.3 Each x ∈ Li
is evaluated by means of a utility function, Ui : Li → <. Given a family of constraints
limiting the set of options open to the agent to L̂i ⊆ Li, the goal of the agent is to find
some x∗ that maximizes Ui over L̂i. If we focus on the possible choices made by a single
agent, we can drop the subindex i from the notation for L, L̂ and U. We will reintroduce
the dependence on the agents in the next sections to analyze the interaction between
different agents.

In order to proceed, we first make some plausible assumptions. The space of options, L,
is presumed to be a (real) Hilbert space. That is, it is a complete metric space with an
inner product. Furthermore, in order to ensure the existence of a x∗ we will also assume
that L̂ is a compact subset of L, and that U is a continuous function. Within this very
general framework, it is then straightforward to induce a category-theoretical represen-
tation of the global optimization of U over L̂, that is, of x∗ as a direct limit.

To begin, consider first a family {Lk}κ
k=0 of closed linear subspaces of L and, for any

given k, let us define the function

Projk : L →
κ⋃

k=0

Lk

such that Projk(x) = xk ∈ Lk, where xk is the projection of x on Lk. The existence of such a
projection is ensured by a straightforward application of the Linear Projection Theorem.4

The projector operator Projk will play a fundamental role in what follows. The intuition
here is that we can think of each Lk as the options set of a local problem. Therefore, the
projection of a global solution x∗ onto Lk will return the point in Lk which is the closest
(i.e, the best!) to x∗. Analogous approaches have been used successfully in several dif-
ferent contexts.5.

3The meaning of these options depends on the context. If the agent is a consumer in a competitive market
with a finite number of goods, she has to choose a vector of those commodities. In a planning problem, she
has to select a plan specifying the amounts of resources used or consumed at each period of time.

4That is, |x− xk| = miny∈Lk |x− y|, where | · | is the norm of L.
5See, among others, Luenberger [13], where these methods are employed to model pricing assets whose

payoffs are outside the span of marketed assets
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In case the projection does not return a local solution, we can still define an operator,
which we call Γk : L̂ → L̂k that formalizes the idea of a choice that is the closest to the
projection (if it does not belong to the subspace):

Γk(x) = {xk ∈ X̂k : xk ∈ argminy∈X̂k |y− Projk(x)|}.

In some cases the global solution is not given, but must be sought by gluing together
local ones “prospectively”, in the hope of producing (or better, abducing) a consistent
global result. In order to formalize this broadly abductive method for seeking a global
solution, we need to take a second, slightly deeper plunge into category theory and start
with the definition of a category of local problems.

Definition 1 Let PR be the category of local problems, where

• Obj(PR) is the class of objects. Each one, sk = 〈L̂k, uk, X̂k〉 involves the maximization of
the continuous utility function uk over the compact set L̂k ⊂ Lk, a closed linear subspace of
L, yielding a family of solutions X̂k.

• a morphism ρkj : sk → sj is defined as L̂k ⊆ L̂j, uk = uj|Lk and dim(Lk) ≤ dim(Lj).6 It
follows from this definition that an identity morphism ρkk : sk → sk trivially exists for every
object sk. Furthermore, given two morphisms ρkj : sk → sj and ρjl : sj → sl there exists
their composition ρjl ◦ ρkl = ρkl , since L̂k ⊆ L̂j ⊆ L̂l , dim(Lk) ≤ dim(Lj) ≤ dim(Ll) and
by transitivity of the restrictions uk = uj|Lk and uj = ul |Lj we have that uk = ul |Lk .

•sk

ρkj

��
•sj

Figure 3: Morphism ρkj from sk to sj.

We can also define P(L) as the category in which the objects are subsets of L and a
morphism between two objects fAB : A→ B is defined as A ⊆ B.

Let us now define now a functor

Σ : PR −→ P(L)
6dim(·) yields the dimension of a subspace of L.
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•A� _

��
•B

Figure 4: Inclusion morphism representing A ⊆ B.

which assigns to a problem sk = 〈L̂k, uk, X̂k〉 the subset Σ(sk) of L defined by

Σ(sk) = {y ∈ L | Γk(y) ∈ X̂k}

A section σk over sk is simply the assignment of the elements of Σ(sk) to sk:

σk : sk 7→ Σ(sk).

Given two problems, sk = 〈L̂k, uk, X̂k〉 and sj = 〈L̂j, uj, X̂j〉, let us write sk / sj iff there
exists a morphism ρ in PR, ρ : sk → sj. That is, sk is a restriction of sj.

Let us define rj
k : Σ(sj) → Σ(sk) such that to Σ(sj) it assigns Σ(sk). Given a section over

sj, rj
k yields a section corresponding to its sub-problem sk.

The following proposition then shows that the functor Σ possesses an important property
that will be crucial for formalizing the possibility of patching up local problems and
yielding a “larger” one:

Proposition 1 Σ is a presheaf.

Proof: Σ : PR → P(L) is a functor. We can analyze its behavior by means of rj
k:

• For any sk ∈ Obj(PR), since sk / sk, rk
k = IdΣ(sk).

• If sk / sj / sl then sk / sl . Thus, rj
k ◦ rl

j=rl
k.

This means that Σ : PR → P(L) is a contravariant functor. Or, in categorical terms, a
presheaf. �

Consider now a family {sk = 〈L̂k, uk, X̂k〉}k∈K ⊆ Obj(PR). It is said to be a cover of an
object sj = 〈L̂j, uj, X̂j〉 of Obj(PR) if sk / sj for each k ∈ K and L̂j ⊆ ∪k∈K L̂k. That is, a
problem sj gets covered by the family {sk}k∈K if the domain of problem sj is included
in the union of the domains of the problems of the family and furthermore, each sk is a
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restriction of sj.

The family of sections {σk}k∈K is said to be compatible if for any pair k, l ∈ K, given
Σ(sk) = Xk and Σ(sl) = Xl ,

Γk(Xk) ∩ Γl(Xk) = Γk(Xl) ∩ Γl(Xl)

Given a cover {sk}k∈K of a problem sj with compatible sections, Σ is then a K-sheaf if
there exists a unique σj = Σ(sj) such that for each k ∈ K,

σk = σj ∩ Γ−1
k (L̂k)

That is, intuitively, Σ is a K-sheaf if σj in fact “glues” together all the assignments σk in
P(L) within the more general framework of their compatibility. Finally, then, if Σ is a
K-sheaf for every {σk}k∈K ⊆ Obj(PR) it is called a sheaf.

Example 1 Let L to be R3 (the three-dimensional real Euclidean space) and the utility function:

U(x, y, z) = 3− 2x2 − y2 − 3z2

to be maximized over L. This yields a single global solution X̂ = {(0, 0, 0)}.

Now consider two possible local problems:

• L1 = {(x, y, z) : z = 0}, with u1(x, y, z)=U|L1 =3− 2x2 − y2 to be maximized over
L̂1 = {(x, y, 0) ∈ L1 : x2 + y2 = 1}, the unit circumference in L1. The class of solutions
for this problem is X̂1 = {(0, 1, 0), (0,−1, 0)}.

• L2 = {(x, y, z) : (x, y, z) · (1,−1, 1) = 0} (i.e. the linear subspace with normal vector
(1,−1, 1)), with u2(x, y, z) = 3 − 3x2 − 4z2 − 2xz, the restriction of U on L2, to be
maximized over L̂2 = {(x, y, z) : 2x2 + 2z2 + 2xz = 1}, the intersection of the surface of

the unit sphere in R3 with L2. Here the solution set is: X̂2 = {(−
√

1
3 ,− 1

2
√

3
− 1

2 , 1
2
√

3
−

1
2 ), (

√
1
3 , 1

2
√

3
+ 1

2 , 1
2 −

1
2
√

3
)}.

It is easy to see that each solution of problem 1 minimizes the distance to the projection of the
single global solution (0, 0, 0) on L1. More precisely Γ1(0, 0, 0) = X̂1. The same is true for
problem 2, since all points in L2 are at a Euclidean distance 1 from the global solution. So, in
particular, the elements in X̂2 minimize the distance to the projection of (0, 0, 0) on L2 and thus,
Γ2(0, 0, 0) = X̂2 .
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Given problems 1 and 2, denoted si = 〈L̂i, ui, X̂i〉 for i = 1, 2, we add a new problem s0, which
is the optimization of U over the surface of the three-dimensional sphere L̂0 = {(x, y, z) : x2 +

y2 + z2 = 1} and thus, X̂0 = {(0, 1, 0), (0,−1, 0)}. Suppose that these are the only objects in
PR. We define Σ : PR → P(L), summarized by the following table (each row being a section
σi, i = 0, 1, 2):

Problems a1 b1 a2 b2

s1 X − X −
s2 − X − X
s0 X − X −

The range of Σ is based only of four elements in L:

a1 = (0, 1, 0) a2 = (0,−1, 0)

and

b1 = (−
√

1
3

,− 1
2
√

3
− 1

2
,

1
2
√

3
− 1

2
) b2 = (

√
1
3

,
1

2
√

3
+

1
2

,
1
2
− 1

2
√

3
)

where a1 and a2 are the R3 solutions of problems s0 and s1 while b1 and b2 are those of s2.

It is easy to check that si / s0 for i = 1, 2, since on one hand each problem si can be seen as the
maximization of U restricted to subsets of the domain of problem s0. On the other hand, Σ(s0)

restricted to each si yields Σ(si). In fact, for s1 it is clear that this is the case. For s2, let us note
that b1, b2 are the solutions of the problem s0 restricted to L̂2, seen as the inverse projection over
the surface L̂0.

Furthermore, {σ1, σ2} is a compatible family of sections. Notice that L̂1 ∩ L̂2 does not include
the solutions to either problem. But then the projections of X̂1 and X̂2 on L̂1 ∩ L̂2 are both ∅,
and thus the sections satisfy, trivially, the compatibility condition. This means that Σ satisfies the
sheaf condition.

Summarizing the discussion up to this point, we can say that given a category of prob-
lems PR over a space L, it is typically desirable to be able to obtain a sheaf Σ : PR →
P(L), such that for any problem sj, covered by any compatible family of sub-problems,
{sk}k∈K, Σ(sj) ∩ Γ−1

k (L̂k) = Σ(sk) for k ∈ K.

4 A Categorical Representation of Games

Let us now consider, instead of the coordination of different local decision problems, the
coordination of games. That is, decision problems involving several agents, instead of a
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single one. Thus, the approach discussed in this section generalized the sheaf-theoretical
framework presented above.

Let us consider a category G of games. Each object G in the category corresponds to a
game G = 〈(IG, SG, OG, ρG), πG〉, where

• (IG, SG, OG, ρG) is a game form:

– IG is the class of players.

– SG = ∏i∈IG
SG

i is the strategy set of the game, where SG
i ⊆ Si is the set of

strategies that player i can deploy in game G, for each i ∈ IG.7

– OG is the class of outcomes of the game and ρG : SG → OG is a one-to-one
function that associates each profile of strategies in the game with one of its
outcomes.

• πG = ∏i∈I πG
i is a profile of payoff functions, where πG

i : OG → R+ is the payoff
function of player i in game G, for each i ∈ IG.

A game is defined in terms of the interactions of players. Each player can be seen as
described in terms of the strategies she can play and the payoffs she can receive from the
results of her action (jointly with those of the other players).

We can define a category G, where the objects are games. Given two games

G = 〈(IG, SG, OG, ρG), πG〉 and G′ = 〈(IG′ , SG′ , OG′ , ρG′), πG′〉,

a morphism of games
G → G′

is such that:

• IG ⊆ IG′ .

• SG
i ⊆ SG′

i for each i ∈ IG.

• There exist two functions, an inclusion pOG′
OG

: SOG′ ↪→ OG for SOG′ ⊆ OG′ and a

projection pSG′
SG

: SG′ → SG, i.e. pSG′
SG

(sG′
1 , . . . , sG′

i , . . . , s|IG′ |) ∈ ∏i∈IG
SG′

i = SG. These
functions verify the following condition:

– For every s′ ∈ SG′ , s = pSG′
SG

(s′) ∈ SG is such that ρG(s) = pOG′
OG

(ρG′(s′)).
7Si is the set of all the strategies that player i can play in the games in which she participates.
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Thus, if a morphism G → G′ exists, G can be conceived as a subgame form of G′.

To complete the characterization of G notice that it is immediate that we can define
pushouts and an initial object in this category:

• Pushouts: Consider three objects G, G′ and G′′ and morphisms G
f→ G′ and G

g→
G′′. Then, take the coproduct of G′ and G′′, denoted G′+ G′′, obtained as the direct
sums of the strategies sets and the outcomes of both games. By identifying the
subgame forms of G′ and G′′ corresponding to G we obtain the pushout of

G′
f← G

g→ G′′

• Initial object: Consider the empty game G∅, where IG∅ = ∅ and consequently
SG∅ = ∅ and OG = ∅ (thus πG∅ must be the empty function). It is immediate to
see that G∅ → G for every G in G.

Then we have

Proposition 1 G is a category with colimits.

Since G is a category with colimits we can define cospans in it. Consider again three

objects G, G′ and G′′ and two morphisms G
f→ G′′

g← G′. This is called a cospan from
G to G′. The interpretation of such a cospan is that G and G′ are subgame forms of the
same game (G′′).

We can conceive each game G in G as a box, G = (inG, outG), where inG and outG are,
respectively input and output ports. inG has type OG, i.e. the input is an outcome of G.
In turn, the outG port has type SG, being each output a profile in G.

Notice that each player i can be conceived as a game (ini, outi), where ini has type
∪G:i∈IG OG and outi has type Si.

Up to this point, our definition of morphisms in G does not involve the payoffs. They
can be incorporated by redefining the games as modal boxes, in which an additional
component are the internal states of the game. More precisely, given any G and the class
of its internal states, ΣG, we can identify G as a triple 〈inG, outG, ΣG〉, associated to two
correspondences:
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• payoff: φ1
G : ¯inG × ΣG → R+OG , such that for the vector o ∈ ¯inG (the vector of

all possible inputs of G, each entry being an outcome of the game) and state σ,
φ1

G(o, σ) = (πi
G(o))o∈OG . That is, it yields the vector of payoffs corresponding to all

the outcomes of G.

• choice: φ2
G : ΣG → ¯outG, such that for any state σ, φ2

G(σ) = s ∈ ¯outG (the class of
all possible strategy profiles in SG) is a profile of strategies that may be chosen at
that state.

Particularly relevant for our analysis is the definition of the internal states of each player
i, Σi. Consider a game G such that i ∈ IG, and a sequence of morphisms in G

G0
i → G1

i → . . . → Gn−1
i → Gn

i

where G0
i is a game in which i is the only player and G = Gn

i . We identify the state
of player i when playing G as a sequence σi

G =〈σi
0, . . . , σi

n−1〉, where σi
k ∈ ΣGk

i
, for

k = 0 . . . , n − 1. Then, a distinguished object σi
∗ ∈ Σi is defined, such that σi

G is one
of its initial segments.8

Therefore, for each game G, σi
∗ can be instantiated yielding the corresponding state, and

therefore the payoffs and the choices of player i in the game. The state σG of the entire
game just obtains as the profile of states of its players.

A simple example is σi
Gn yielding as payoff for i the product of the payoffs she gets in the

subgames of Gn. This case will be elaborated a bit more in Example 1, below.

We can define the category of cospans in G, denoted cospanG which has a symmetric

monoidal structure. Its objects are the same as those of G and a morphism G h→ G
′

is a
cospan from G to G′, indicating that there exists a game of which G and G′ are subgame
forms. Thus, morphisms in cospanG are actually isomorphisms.

Given two morphisms in cospanG , G
f→ G′ and G′

g→ G′′ there exists a morphism

G
g◦ f→ G′′ that obtains as a composition of the corresponding cospans.

The monoidal structure of cospanG is given by:

• The unit is G∅, the initial object in G.

• The monoidal product of G and G′, is the coproduct G + G′.

8Thus, σi
∗ has a forest structure.
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We now present a diagram language for open games. We start by considering the sym-
metric monoidal category WG . By definition, we have that:

WG = cospanG

Each object, i.e. a game G, is seen as a 〈inG, outG, ΣG〉-labeled interface, satisfying φ1
G and

φ2
G. On the other hand, morphisms G → C ← G′, are called 〈in, out, Σ〉-labeled wiring di-

agrams. The interpretation is that C is the overarching game that connects the subgames
(not just the game forms) G and G′.

We write ψ : G1, G2, . . . , Gn → Ḡ to denote the wiring diagram φ : G1 + G2 + . . . + Gn →
Ḡ. We can, in turn see this as

G1 + G2 + . . . + Gn
f→ C

f̄← Ḡ

which indicates that, being f and f̄ isomorphisms,

Proposition 2 Ḡ is the minimal game that includes the direct sum of G1, . . . , Gn as a subgame.

5 Hypergraph Categories and Equilibria

We define a hypergraph category 〈G, Eq〉 with Eq : WG → ∏i Si, such that, for every object
G in WG , Eq(G) is a class of vectors in ∏i∈I SG

i , the strategy set of game G. We assume
that Eq(G) is a class of equilibria of G, for some notion of equilibrium (as for instance,
dominant strategies equilibrium, admissible strategies, or Nash equilibrium).

Example 2 Consider two games, G between players 1 and 2:9

Bx Bll
Bx 2, 1 0, 0
Bll 0, 0 1, 2

and G′ between players 2 and 3:10

C D
C 2, 2 0, 3
D 3, 0 1, 1

9This a Battle of the Sexes game, where S1 = S2 = {Bx, Bll}.
10A Prisoner’s Dilemma, where S2 = S3 = {C, D}.
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The corresponding wiring diagram is:

BoS

PD

1 1

2 2

3 3

G′

OBOS

OPD

OG′

In red we have highlighted Eq(G) = {(Bx,Bx), (Bll, Bll)} and Eq(G′) = {(D,D)}, where Eq
corresponds to Nash equilibrium.11

Let us represent now G + G′. We start by building its corresponding game form. We obtain two
tables, where the first one corresponds to player 3 choosing C:

Bx-C Bx-D Bll-C Bll-D
Bx o1,1 o1,2 o1,3 o1,4
Bll o2,1 o2,2 o2,3 o2,4

and another corresponding to player 3 choosing D:
Bx-C Bx-D Bll-C Bll-D

Bx o′1,1 o′1,2 o′1,3 o′1,4
Bll o′2,1 o′2,2 o′2,3 o′2,4

For instance, o11 indicates that 1 and 2 go to Box and 2 and 3 Cooperate. On the other hand,
o′1,1 indicates that, again 1 and 2 go to Box, but while 2 keeps Cooperating, 3 Defects. The other
entries can be interpreted likewise.

Suppose that the internal states of the players, σ1
∗ , σ2
∗ and σ3

∗ are such that instantiated on G + G′

yield the following payoffs and choices:

11Notice that here player 2, participates in two games.
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If 3 chooses C:

Bx-C Bx-D Bll-C Bll-D
Bx 2, 1× 2, 2 2, 1× 3, 0 0, 0× 2, 2 0, 0× 3, 0
Bll 0, 0× 2, 2 0, 0× 3, 0 1, 2× 2, 2 1, 2× 3, 0

while if 3 chooses D:

Bx-C Bx-D Bll-C Bll-D
Bx 2, 1× 0, 3 2, 1× 1, 1 0, 0× 0, 3 0, 0× 1, 1
Bll 0, 0× 0, 3 0, 0× 1, 1 1, 2× 0, 3 1, 2× 1, 1

In words, players 1 and 3 keep the payoffs they get in the subgames, while 2 takes the product
of the payoffs in G and G′. In red, we have highlighted the equilibria of G + G′, under this
specification.

Let us define an operation ∪̂ such that given two equilibria s ∈ Eq(G) and s′ ∈ Eq(G′),
yields a new profile s − s′ ∈ Eq(G)∪̂Eq(G′) verifying that for each player i ∈ IG ∩ IG′ ,
a new strategy obtains combining si and s′i, while in on all other cases the individual
strategies are the same as in G and G′. Furthermore, πG∪̂G′

i (s− s′) = πG
i (s)× πG′

i (s
′
) for

i ∈ IG ∩ IG′ .12

In our example, since Eq(G + G′) = {(Bx, Bx-D, D), (Bll, Bll-D, D)}, we have that

Eq(G)∪̂Eq(G′) = Eq(G + G′).

This example illustrates the following claim:

Proposition 3 For any pair of games G and G′, Eq(G)∪̂Eq(G′) = Eq(G + G′).

Proof: Trivial. If IG ∩ IG′ = ∅, G + G′ = G ∪ G′ with G ∩ G′ = ∅. Thus, each equilibrium of
G + G′ is just the disjoint combination of equilibria in G and G′.
If, on the other hand, IG ∩ IG′ 6= ∅, given i ∈ IG ∩ IG′ , her strategy set in G + G′ is SG

i × SG′
i ,

where SG
i and SG′

i are her strategy sets in G and G′, respectively. Now suppose that sG
i and sG′

i

12An alternative yielding also Proposition 3 obtains if, instead, we take πG∪̂G′
i (s− s′) = πG

i (s) + πG′
i (s

′
)

for i ∈ IG ∩ IG′ .
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are equilibrium strategies of i in the individual games but that (sG
i , sG′

i ) does not belong to an
equilibrium in G + G′. Then, there exist an alternative combined strategy (ŝG

i , ŝG′
i ) such that on

the new profile πi yields a higher payoff, but since this equilibrium can be decomposed in two
profiles, one in G and the other in G′, the payoff of i is the product of the payoffs over those two
profiles. But then either ŝG

i yields a higher payoff than sG
i or ŝG′

i yields a higher payoff than sG′
i

(recall that they are all positive real numbers). Thus, either sG
i or sG′

i is not an equilibrium in the
corresponding game. Absurd. �

If we denote + the monoidal operation in WG , if we take ⊗ = ∪̂ as monoidal operation
in ∏i Si, Proposition 3 indicates that there exist a trivial natural isomorphism

Eq(G)⊗ Eq(G
′
) → Eq(G + G

′
)

Furthermore, taking the unit in ∏i Si to be the empty set, we have also that ∅ = Eq(G∅),
where G∅ is the initial object in G and thus in WG .

We have that

Proposition 4 Eq is a lax monoidal functor.

Thus, the corresponding algebra allows to associate the composition of games with the
equilibria of the components.

Proposition 4 depends critically on the possibility of defining ⊗ in terms of a function f,
defined as follows. Given a player i ∈ IG ∩ IG′ , a combined strategy si− s′i is such that for
s = (si, s−i) ∈ Eq(G) and s′ = (s′i, s′−i) ∈ Eq(G′), satisfying πi(s− s′) = f(πG

i (s), πG′
i (s′))

and with s− s′ ∈ Eq(G + G′). As we saw above if f is the arithmetic product or sum, Eq
will be indeed a lax monoidal functor.

But this restricts the compositionality of games to just trivial cases. We are interested in
more general and non-obvious cases. In order to do that consider an alternative charac-
terization of the hypergraph category 〈G, Eq〉:

Eq : WG →∏
i

Si ×∪G∈Obj(G)ΣG

Furthermore, we need another definition of ⊗:

⊗ : (∏
i

Si ×∪G∈Obj(G)ΣG) × (∏
i

Si ×∪G∈Obj(G)ΣG) → ∏
i

Si ×
⋃

G∈Obj(G)
ΣG
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such that given two games G and G′ with s ∈ ∏i∈IG
Si and σG, and s′ ∈ ∏i∈IG′

Si and σG′

we have:

(s, σG)⊗ (s′, σG′) = (s̄, σG+G′) ∈ ∏
i∈IG+G′

Si × ΣG+G′

where s̄ ∈ SG+G′ is a Nash equilibrium if and only if s and s′ are Nash equilibria of G
and G′ respectively.

⊗ is well-defined. To see this, just recall that, by definition G + G′ obtains in terms of
the game forms of G and G′ (the strategy sets and the outcomes), allowing different pos-
sible internal states and thus payoffs. The view of games as boxes presented in Section
4 indicates that there exist sequences of internal states of games, in parallel to sequences
of morphisms between games, allowing to define σG+G′ , and thus payoffs that make s̄ a
Nash equilibrium if s and s′ are also equilibria.

We can see that ∏i Si ×
⋃

G∈oxObj(G) ΣG with ⊗, defined as above can be seen as a
monoidal category, with morphisms defined in terms of those of G, with (∅, ∅) as its
initial object. It allows to define Eq in such a way that by definition:

Proposition 5 Eq is a lax functor satisfying Eq(G + G′) = Eq(G)⊗ Eq(G′).

6 A more general model

〈G, Eq〉, in any of the two versions of Eq seems too rigid to capture the dynamics of
economic interactions. A more flexible structure is needed.

Let us start with the category of polynomial functors, Poly:

• Its objects have the following general form:

p = ∑
i∈I

yp[i]

where each term yp[i] is a functor with domain p[i] into Set. Each i can be conceived
as a problem while p[i] is a set of its solutions.

• Given p = ∑i∈I yp[i] and q = ∑j∈J yq[j] a morphism φ : p → q is φ = (φ→, φ←) such
that
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– φ→ : I → J and,

– φ← : q[φ→(i)] 7→ p[i].

That is, φ sends problems of I into problems of J and then the corresponding
solutions in q back to the solutions in p.

We can conceive any p ∈ Ob(Poly) as an interface between inputs and outputs, being
the inputs problems and the outputs their solutions. There are different ways of creating
new interfaces up from other interfaces. We focus on the following construction:

• [p, q] = ∑φ:p→q y∑i∈I q[φ→(i)], an internal hom in Poly. It can be seen as a process that
takes as inputs (problems) the morphisms from p to q and as outputs (solutions) all
the possible solutions to the images of p in q.

• Given [p, q], a [p, q]− Coalg is a category in which each object is triple 〈s, ρ, µ〉:

– s ∈ S, where S is a space of states, capturing the dynamics of the interface,

– ρ : s 7→ (φ, i, q[φ→(i)]). That is, it assigns to the current state one of the
solutions in [p, q],

– µ updates the state in response to that pattern, i.e. µ(φ, i, q[φ→(i)]) = s′ ∈ S.

Consider now a category Org defined as follows:

• Ob(Org) = Ob(Poly) and,

• Morph(Org) = [p, q]− Coalg.

This means that two interfaces (connecting problems with their solutions) p and q are
related by dynamic procedures of reconnection between them.

Our generalized model, covering both PR and 〈G, Eq〉 is a category PR− G based on
Org such that, briefly:

• for each object a it corresponds pa in Org,

• for objects a1, . . . , an, b there corresponds a [pa1 ⊗ . . . ⊗ pan , pb] − Coalg of states
Sa1,...,an,b.13

• Each object a has an identity morphism.

• Pairs of morphisms compose.

13The operation pa ⊗ pb, where pa = ∑i∈I ypa [i] and pb = ∑j∈J ypb [j], is such that for each problem (i, j) ∈
I × J yields the solutions to i and j, pa[i] and pb[j].
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The last two requirements indicate, roughly, that morphisms inherit the identity and
compositionality properties of Org
.

Theorem 1 Both Ob(G) ⊆ Ob(PR− G) and Ob(PR) ⊆ Ob(PR− G).

Proof: Each problem in PR can be interpreted as an interface between the problem itself and its
optimal solutions. The same applies to any interactive decision-making setting in G.

More precisely, a local problem sk ∈ Ob(PR) and a game G ∈ Ob(〈G, Eq〉) can be represented
by polynomial functor psk or pG, respectively. In the former case, psk is an interface between the
specification of the local problem (L̂k, uk) and its solutions X̂k. In the case of a game, pG is an
interface between the game G and its equilibria Eq(G).

Each state in the morphism between two interfaces psk and psj represents a particular rk
j :

Σ(sk) → Σ(sj) that sends a section of solutions over sk to a corresponding section over sj,
yielding a sheaf.

Analogously, each state in the morphism between two interfaces pG and pG′ represents a particu-
lar wiring, connecting the games G and G′, such that the equilibrium obtains by tensoring those
of the two games. �

Notice that neither PR nor G are subcategories of PR− G. While their objects are
also objects of the latter, morphisms among them are not morphisms in PR− G, which
support dynamic rearrangements of the relations between its objects. Thus, PR− G in-
corporates all the representational advantages of PR and G, adding the possibility of
capturing the dynamics of actual systems.

The following two examples exhibit the representational power of PR− G:

Example 3 ([15]): Consider a Principal-Agent problem defined by two functions:

Φ→ : X×Y×R→ R and Π : X×Y×R→ R

where:

• X is the compact set of types of the Agent.

• Y is the compact set of possible decisions made by the Agent.

• Φ→ is continuous, strictly decreasing in the third argument.
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• Φ→ is full range in the third argument: Φ→(x, y, ·)[R] = R for every (x, y) ∈ X×Y.

• Π is continuous and increasing in the third argument.

• Π is full range in the third argument: Π(x, y, ·)[R] = R for every (x, y) ∈ X×Y.

Given a type x of the Agent, her decision y and v, the money transfer to the Principal, Φ→(x, y, v) =
uA is the utility of the Agent, while Π(x, y, v) = uP is the utility of the Principal.

An inverse generating function is

Φ← : Y× X×R→ R

such that given uA = Φ→(x, y, Φ←(y, x, uA)) there exists v = Φ←(y, x, Φ→(x, y, v)).

Given λ ∈M, the class of Borel measures over X×Y and u, a reservation utility of the Agent,
the Principal’s problem amounts to choosing 〈λ, ūA, v̄〉 as to maximize∫

X

∫
Y

Π(x, y, Φ←(y, x, ūA))dλ(x, y)

s.t. v̄ = Φ←(y, x, ūA) and ūA ≥ u.
This setting can be naturally represented by defining two objects in PR− G, A, and P (the
Agent and the Principal, respectively). The corresponding polynomial functors are:

• pP takes as input u and returns the optimal values λ∗, u∗A and v̄∗. That is, pP =

∑u∈R ypP[u], such that pP[u] = 〈λ∗, u∗A, v̄∗〉.

• pA takes as input v̄ and returns her decision y and the Principal’s utility uP. That is,
pA = ∑v̄∈R ypA[v̄], such that pA[v̄] = 〈y, uP〉.

Then, the entire problem can be understood in terms of the identity morphism of pA ⊗ pP,
yielding the adjunction between Φ→ and Φ←.

A promising area of research in which PR− G could be relevant for the design of mech-
anisms:

Example 4 ([11] [7]): Mechanisms14 can be conceived as game forms. That is, each mechanism
M can be represented as M = (IM, SM, OM, ρM) (see Section 4).

Each i ∈ IM can be given different incentives according the environment e ∈ E in which she
interacts with the others. Each e ∈ E will have an associated profile of payoff functions that

14Institutions as well.
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correspond to the outcomes in M, πe
M.

The task of a mechanism designer D is to assign to a given environment a mechanism M ∈ M,
in order to ensure a target o∗. Thus, in PR− G, D has an associated pD = ∑e∈E ypD [e] where

pD[e] = {〈M, πe
M〉 : M ∈M such that s∗M ∈ Eq(〈M, πe

M〉) and ρ(s∗M) = o∗ ∈ OM}

Each game form M ∈ M constitutes a local problem. The polynomial corresponding to these
problems is pM. In turn, given the choice of Nature (represented by a constant polynomial
pE = E), the whole problem can be described by a [pD × pE, pM]-coalgebra, where:

[pD × pE, pM] = ∑
φ:pD×pE→pM

y∑e∈E pM[φ→(e)]

and pM[φ→(e)] = 〈M, πe
M〉.

7 Conclusions

This paper discussed the question of representing economic phenomena in terms of
interactions among intentional agents. We resorted to the language of Category Theory
and, in particular, constructions like sheaves, hypergraph categories, and polynomial functors.

The category defined in terms of the latter, PR− G, has as objects the interfaces between
problems and their solutions, while the interaction among them is captured by coalge-
bras based on the internal homs of the interfaces. That is, sets of states that determine
the arrangement of connections among the problems and their solutions. Furthermore,
the connections are rearranged in response to the outputs obtained previously.

We intend to explore further this formalism and use it to represent specific economic
problems. While a first step involves showing that PR− G can reformulate known
models, the real gist of this development is to capture new phenomena, establishing
their relations to the former.
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