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Abstract 

This study examines the production technology and technical efficiency of Argentine wineries 

producing high-quality versus low-quality wines for both domestic and export markets. Using 

data from a survey of 230 Argentine wineries, we estimate production functions with Ordinary 

Least Squares and assess technical efficiency through Stochastic Frontier Analysis. We 

differentiate between above-average and below-average quality wine producers and further 

segment these into exporters and non-exporters. Our findings highlight distinct production 

technologies and input intensities between high-quality and low-quality wine producers. High-

quality wine producers show no economies of scale, unlike their low-quality counterparts. 

Additionally, exporters, particularly those with higher export intensity, exhibit greater 

efficiency and quality levels compared to lower-intensity exporters and non-exporters. These 

results offer valuable insights for emerging market policymakers and agribusinesses, 

illustrating how strategic quality differentiation and export focus can enhance competitiveness 

and productivity in the global wine industry. 
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1. Introduction 

The global agri-food industry is increasingly recognized for its potential in technological 

advancement and value addition, particularly through product differentiation and quality 

enhancement. The wine industry, where quality and origin command a premium, exemplifies 

how emerging markets can enhance the value of their exports through strategic innovation 

and quality upgrading. Since the 1970s, latecomers in the global wine market have 

transformed how wine is produced, sold, and consumed, highlighting the role of consistent 

investments in innovation (Villanueva et al., 2023). Argentina’s wine industry, known for 

producing both high-quality and low-quality wines, serves as an illustrative case of how 

emerging markets can successfully compete internationally by focusing on quality 

differentiation. 

Competition in international markets increasingly centers on product quality, compelling firms 

to secure high-quality inputs and adhere to stringent production and marketing standards to 

gain market access (Amodio and Martinez-Carrasco, 2018; Atkin et al., 2017; Bas and Strauss-
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Kahn, 2014; Bastos et al., 2018; Hallak and Sivadasan, 2013; Halpern et al. 2015; Kugler and 

Verhoogen, 2012). Argentine wineries, particularly those that export, have responded by 

investing in better-trained human capital, advanced physical capital, and refined marketing 

practices (Depetris-Chauvin and Villanueva, 2024). This aligns with the broader literature on 

international trade and firm heterogeneity, which consistently shows that exporting firms tend 

to be more productive, larger, and more efficient than their non-exporting counterparts 

(Melitz, 2003; Bernard and Jensen, 1999; Crozet et al., 2012; Brambilla et al. 2017). The 

productivity advantage of exporters often stems from their ability to leverage superior 

resources, adopt advanced technologies, and engage in learning-by-exporting processes, 

thereby enhancing their competitive edge (Clerides et al., 1998; Lileeva and Trefler, 2010; 

Golovko and Valentini, 2011). 

Despite the growing importance of quality in global trade, there is limited evidence on whether 

the production functions of high-quality wines differ from those of lower-quality wines, 

particularly in the context of an emerging market economy like Argentina. This paper aims to 

address this gap by assessing the differences in production functions between Argentine 

wineries producing high-quality wines and those focused on lower-quality products. We 

hypothesize that producers of above-average quality wines employ distinct techniques and 

input mixes compared to those producing below-average quality wines, which could have 

significant implications for their competitiveness in both domestic and export markets. 

Additionally, we explore the relative technical efficiency within these groups, with a particular 

focus on the differences between exporters and non-exporters, reflecting the established link 

between export status and firm productivity (Head and Ries, 1999; Baldwin and Gu, 2004; 

Wagner, 2007). 

The primary contributions of this study are twofold. First, we characterize the differences in 

production technology across diverse types of wineries, which is crucial for understanding how 

product differentiation strategies impact performance in international markets. Numerous 

studies have emphasized the importance of differentiation strategies in enhancing 

competitiveness, particularly in the wine industry, where the ability to manage quality 

differentiation is key to success (Chen et al., 2014; Cavusgil and Knight, 2015; Depetris-Chauvin 

and Fernández-Olmos, 2024; Knight et al., 2020). Second, we estimate the technical efficiency 

of these wineries using Stochastic Frontier Analysis (SFA), providing insights into how quality 

differentiation influences efficiency within the Argentine wine sector. Given the importance of 

studying comparable goods in efficiency assessments, we design meaningful subsamples 

containing well-differentiated producers of wines of different quality. Although quality is an 

unobservable characteristic, we employ a methodology that establishes a cardinal measure 

for wine quality through an index, enabling the construction of these subsamples. 

This analysis is based on a new representative sample of 230 Argentine wineries, covering 

topics such as production, inputs, processes, quality, export destinations, and commercial 

practices. Following the modern theory of heterogeneous firms in trade, which highlights the 

distinct dynamics of exporters and non-exporters (Chaney, 2008; Helpman et al., 2008; 

Bernard and Jensen, 1995; Melitz, 2003), we distinguish in our analysis between exporting and 

non-exporting wineries. 
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This paper is structured as follows. Section 2 reviews the literature on technical efficiency in 

wineries. Section 3 presents the data, methodology, and models used in the analysis. Section 

4 discusses the results, and Section 5 concludes with implications for the broader agri-food 

sector in emerging markets. 

2. Literature review 

Technical efficiency in wineries has been widely studied using Data Envelopment Analysis 

(DEA) and SFA. A non-exhaustive list of research articles using DEA includes Barros and Santos 

(2007), Sellers and Alampi-Sottini (2016), and Conradie et al. (2018). Another set of studies 

used SFA, such as Kallas and Lehnhardt (2011), Moreira et al. (2011), Vidoli et al. (2016), Piesse 

et al. (2018), Faria et al. (2021), and Santos et al. (2021). Lastly, Tóth and Gál (2014), Marta-

Costa et al. (2017), Rebelo et al. (2018), and Urso et al. (2018) estimated and compared results 

from both types of models.  

Table 1 summarizes the approach, data, and variables used in the analyzed studies, and in the 

paragraphs below, we discuss the details of each contribution and relate them to our goals.  

An empirical efficiency study determines the relative position of each producer within a 

sample, comparing the input-output results of each observation to the group's best practices. 

There is no ambition to establish a theoretical or ideal efficiency level. Instead, the objective 

is to determine how efficiency varies within the sample and to identify the reasons for the 

difference, providing results useful for managerial and policy purposes. 

Differences in productivity and efficiency are often related to wineries’ characteristics. For 

instance, Barros and Santos (2007) compare the efficiency of cooperatives and private 

enterprises in the Portuguese wine industry, employing DEA, and conclude that, on average, 

Portuguese wine cooperatives are more efficient than their private counterparts. Sellers and 

Alampi-Sottini (2016) analyze the influence of firm size on the economic performance of 

wineries, employing different traditional profitability and productivity measures and a non-

parametric technique to estimate efficiency as an indicator of performance. They find that size 

has a positive influence on the economic performance of wineries. Urso et al. (2018) 

investigate, using a DEA model, the technical efficiency of Italian wineries. They then estimate 

the determinants of the estimated levels of efficiency through an econometric model, aiming 

to understand which farm and area characteristics affect the differences in efficiency levels. In 

this set of contributions, the motivation is related to different organizational forms and the 

scale. In our sample, there are diverse types of firms (cooperatives and limited liability firms) 

and different scales of production (from familiar firms, “boutique” wineries, to industrial 

establishments). Our interest is to study efficiency in groups of different quality wines. 

Efficiency could differ by region and change over time. For instance, Marta-Costa et al. (2017) 

analyze the productive efficiency of the viticulture sector for the Portuguese regions from 1989 

to 2007, using both deterministic and stochastic approaches. Their results show increased 

technical efficiency in all regions when using SFA. Further, the DEA approach through the 

Malmquist index suggests a stabilization of technical efficiency during this period. Conradie et 

al. (2018) compare long-established and more recently developed wine regions in South Africa. 

DEA frontiers produce measures of technical efficiency and technical change over time. The 
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results for scale efficiency are close to unity and switch from increasing to decreasing returns 

frequently over the period. The Malmquist TFP index shows limited technological change and 

efficiency improvements. The differences between the old and new districts are minimal, but 

growth was slightly higher in the newer regions. Faria et al. (2021) investigate the presence of 

spatial spillovers in firms’ productive (in)efficiency, employing a spatial SFA model, which 

accounts for spatial dependence and persistent and transient (in)efficiency. The novelty of this 

study is the inclusion of information on the firms’ exact location, which allows the 

incorporation of the neighboring dependence in the productive efficiency analysis. In our case, 

we do not differentiate wineries by origin, although above-average quality wine exporters are 

clustered in the primary producer region of Argentina, Mendoza. Our sample includes wineries 

from this wine region mainly, but our separation of the sample is not necessarily geographical 

but by quality. Also, since our database is a cross-section, we are not concerned with the 

evolution of efficiency over time. 

Differences could drive comparisons of technical efficiency at the farm level. Moreira et al. 

(2011) estimate and analyze the technical efficiency component of productivity for a sample 

of wine grape producers in Chile. They used a Cobb-Douglas model to estimate an SFA model 

and obtain technical efficiency scores at the individual block and farm level. The results suggest 

a 77 percent average farm-level technical efficiency and nearly constant returns to size. Our 

sample is at the winery level; we do not have detailed information on farms or parcels within 

each winery. 

Kallas and Lehnhardt (2011) assess the determinant factors that drive the wine and meat 

industries in Catalonia (Spain) to abandon their activities and the timing of their decision. They 

estimate technical efficiency using SFA. Results show a significant impact of technical efficiency 

and other economic factors on exit duration. Again, our sample is a cross-section; we cannot 

perform dynamic analysis. 

There is evidence of differences in efficiency by country. Tóth and Gál (2014) estimate a Cobb-

Douglas production function and technical inefficiency using SFA, showing a significant 

difference in technical efficiency between the major Old and New World countries, higher in 

the latter. In the study, inefficiency is related, in a second stage estimate, to the development 

of the financial system, the quality of human capital, and per capita wine consumption. Our 

database is of one New World producer. We could be interested in differences in efficiency at 

the regional level; however, even when the industry in Argentina is geographically distributed 

across 2,400 kilometers from North to South, wineries, production, exporting activity, and 

above-average quality are very concentrated in the primary producer province (Mendoza). 

Contextual and structural factors may play a role. Vidoli et al. (2016) estimate the efficiency of 

a representative sample of Italian wine producers using a spatial SFA framework that allows 

isolating the spatial dependence among decision-making units (DMU) and evaluating the role 

of intangible local factors in firm performance. The study shows that specific territorial 

patterns cannot be explained solely by contextual factors. According to the study, in most 

localities, an embedded community stimulates local learning that thrives on the diffusion of 

tacit knowledge through continuous interaction among actors. The effect differs across firm 

sizes and has a more significant impact on small firms. Santos et al. (2021) analyze the 
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productive efficiency of wine-growing farms and the structural factors that make wine grape 

farms more efficient in a sample of 154 wine-growing farms with specific input-output 

information from 2017. Many of the discrepancies among wineries and regions may be due to 

structural factors, such as the type of wine grapes and the specific characteristics of the region. 

In our study, we use some characteristics as controls, not based on regional differences but in 

practices related to wine quality. We find that some of these characteristics help explain 

efficiency in producing above-average quality wines, while they are not essential for producing 

below-average quality wines.  

Inexperience in wine production could be a driver of inefficiencies. Piesse et al. (2018) apply 

an SFA model to wine grape farms in South Africa, comparing the efficiency levels for the old 

established wine regions with those of newer entrants. Thus, they investigate whether 

experience plus the first choice of location matters more than the follower's advantage of 

newer technology. We have information on several attributes of the firm's human capital, such 

as years of experience of their oenologists or marketers. However, these variables are not 

statistically significant in our model estimations. 

In summary, precedent studies employed DEA, SFA, or both methods to estimate technical 

efficiency. The studies used cross-sectional or panel data. In a few cases, they use two-stage 

methods (DEA and econometrics to assess efficiency determinants) or spatial models (to 

assess differences due to the territorial position of the wineries). The dependent variable from 

these studies is either wine production or wine value, and some authors used sales instead of 

production. In addition, grape production is used as an independent variable (the raw material 

of the production process. The main explanatory variables included for production and sales 

functions are inputs, proxies of land, capital, labor, and raw materials. Moreover, some studies 

incorporated environmental (contextual or non-discretionary inputs) and qualitative variables 

to explain efficiency. We did not find studies that explicitly addressed quality, our main 

concern. Our contribution is to apply a method to separate production by quality when 

studying production technology and efficiency, recognizing that input mix and practices differ 

when producing high- or low-quality wines. 

Table 1: Characterization of wineries technical efficiency studies. 
Study Method Sample  

(type, DMUs, years, 
place) 

Outputs Inputs, quality, and environmental factors 
considered 

Barros and 
Santos (2007) 

DEA Panel, five years, 27 
wineries (DMUs), 
Portugal 

sales, the value of 
production, and 
gross value added 

Labor (workers), cost of labor, capital (book 
value of non-depreciated assets), cost of capital 

Moreira et al. 
(2011) 

SFA Cross section, 263 
observations (blocks) 
of 38 DMUs (farms), 
Chile 

Wine Labor cost, Machinery cost, other inputs, 
Block size Age of plantation, red wine, 
Premium, Single cordon, Double cordon, 
Pergola, and regions of Aconcagua and 
Cachapoal, Casablanca, Maipo, Colchagua and 
Rapel, Curicó, and Maule 

Kallas and 
Lehnhardt (2011) 

SFA 231 active and 20 
inactive firms, 
(Catalonia) Spain 

Deflated total sales 
of wine 

Labor (wages), cost of intermediate inputs, 
capital 

Tóth and Gál 
(2014) 

SFA, two 
stages 

Panel, 12 years, 16 
countries (DMUs), 
Cross Country (11 
Old-World and 5 New 
World producers) 

wine production land (area of vineyards), capital (agricultural 
capital stock), and labor force (employment in 
agriculture); four macroeconomic elements, 
and per capita wine consumption and 
belonging either to the Old or the New Wine 
World 
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Vidoli et al. 
(2016) 

Spatial SFA Cross section, 853 
wineries (DMUs), Italy 

Wine labor, machinery, water-energy-fuel, and land 
capital; the spatial effect includes endogenous 
factors linked to the productive process or the 
corporate characteristics, exogenous physical 
factors, and exogenous economic indicators 
related to the local supply factors. 

Urso et al. (2018) DEA, two 
stages 

Panel, six years, Italy Gross marketable 
output 

the value of the land capital, the value of labor, 
and the value of the working capital 

     
Piesse et al. 
(2018) 

SFA Panel, 77 farms 
(DMUs) for 11 years, 
South Africa 

Value of wine 
production 

land, labor (wages), pesticide and herbicide 
costs, and fertilizer, fuel, and electricity costs 
(the two latter to proxy machinery and 
irrigation). Additionally, labor supervision costs, 
the proportion of permanent to total labor 
costs, the share of inorganic fertilizers in total 
fertilizer costs, the ratio of modern to old 
trellising, the proportion of total area on which 
drip irrigation or no irrigation was in place; the 
share of total planting that is on old vines; and 
the proportion of total planting allocated to red 
varieties. 

Faria et al. (2021) Spatial SFA Panel, 304 wineries 
(DMUs) for six years, 
Portugal 

Value of total sales number of employees, the value of the fixed 
assets’ depreciation and amortizations as a 
proxy for the capital input, cost of raw 
materials, and the cost of supplies and services 

Santos et 
al. (2021) 

SFA Cross section, 
154 wineries 
for 2017, 
Portugal. 

Grape 
production 

land, labor capital, and 
intermediate consumption 
costs); geographical location 
and type of wine produced 

Source: Authors’ elaboration. 

3. Data, methodology and models 

3.1 Data 

Our data, collected from a diverse range of wineries, is a representative sample of producers 
distributed among all wine-producing regions of Argentina between September 2019 and May 
2021. The survey was answered by 230 wineries (representing 26 percent of total Argentine 
wineries). Of these, 164 exported part of their production (71 percent), while 66 were non-
exporting wineries (almost 29 percent of the sample). Two-thirds of the non-exporting 
wineries are in Mendoza, the main wine-producing region, which accounts for more than four-
fifths of national production.  

The survey was designed to gather comprehensive data, ranging from the winery 
characterization (age, size, ownership, location, sales, price segments, and employment) to 
the winery’s production, qualities, inputs, marketing, and sales practices. It also provides data 
and information regarding technological and human resources and their participation in 
export markets (Depetris-Chauvin and Villanueva, 2024). Some observations are lost due to 
missing data in critical variables (outputs and inputs). 

Table 2 presents the variables we use in our models, defining them and establishing the 
measurement units. As outputs, we have information on the wine production of each winery 
-in million liters-. The inputs are surface (hectares), labor (number of workers), capital index 
(as an indication of the capital stock, built adding several dummies of capital equipment that 
the wineries reported, see below), the grape yield (in tones by a hectare of the entry-level 
product of each winery). Some contextual (“environmental” in the efficiency literature jargon) 
variables address the proportion of temporary workers relative to total workers and the 
proportion of wine produced with own harvested grapes. 
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The table presents three partial productivity ratios (of land, labor, and capital) that will later 
be useful for characterizing the wineries within each subsample, comparing them, and 
correlating them with the efficiency measures determined by the estimates. 

Table 2: Definition of the variables 

Name Variable label Type of variable 

ProdinL Wine production (M liters) Output 

Surface Surface (hectares) Input 

Labor Number of workers Input 

capital_index Capital Index Input 

Entryyield Entry yield (tons per hectare) Input 

prop_temp The proportion of temporary workers relative to total workers Environmental 

perc_ownharvest Percentage of production that is from own harvest Environmental 

outputHa = ProdinL/surface Productivity of land 

outputK = ProdinL/capital_index Productivity of capital 

outputL = ProdinL/Labor Productivity of labor 

Source: Authors’ elaboration. 

We use information on each firm's capital goods to create an index to obtain a capital measure. 
It is an unweighted sum of eighteen dummy variables of capital goods. This approximation 
behaves better than an alternative index built using a Principal Component Analysis (PCA) of 
the different physical capital measures. The capital index goes from 0 to 1.  

Capital index = (Grapesortingtable + Grapecrusher + Presser + Tanks + Pumps + Filters 
+ Bottlingequipment + Automatedwinerycontrol + Undervineweeders + Prepruners + 
Trimmers + Sprayers + Shredder + Pickingmachine + Tractors + irrigation_eq + 
Automatedvineyardcontrol + Cropscover)/18  (1) 

The survey does not provide a direct indication of wine quality and there is no single definition 
of quality in the wine industry (Charters and Pettigrew, 2007).  Some authors use prices as an 
indication of wine quality (Schnabel and Storchmann, 2010; Oczkowski and Doucouliagos 

2015). The respondents of the survey were asked to inform the percentage of four price 
categories of wines they sell: value, premium, luxury, and iconic. However, due to some 
missing data, we cannot use this criterion as a proxy for quality. We also lack data on 
production value, and even when prices could yield a proxy of quality, high prices could also 
reflect high relative costs (Nerlove, 1995; Oczkowski, 1994; Combris et al., 1997, 2000). Export 
unit values are sometimes used as a proxy for quality in international trade (Schott, 2004; 
Hallak, 2006; Kugler and Verhoogen, 2012). We do not have that information. We do not have 
scores given by experts either, which can be another proxy of quality (Ferro and Benito-Amaro, 
2018). Instead, we built an index of quality with information from the survey. Our index 
captures a winery’s aim to reach a certain level of (sensory) quality rather than the actual 
quality achieved. There are two advantages to this approach. First, there is substantial 
agreement among winemakers that performing certain actions, ceteris paribus, enhances 
sensorial quality (see Reynolds 2010, Ch. 11, and Van Leeuwen and Darriet 2016). Second, 
since our measure is linked to the physical attributes of wines, it is more closely connected to 
the production function of the wineries. Thus, following Depetris-Chavin et al. (2023), we call 
this measure “pursued quality”. The variable adds five equally weighted dichotomous 
variables, each associated with a winemaking or agricultural practice that leads to higher 
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organoleptic quality. Since the quality index comprises five dichotomous variables, it ranges 
from a minimum score of 0 to a maximum score of 5. 

Pursued quality index = (below_average_yield + greenharvest + egrapesorting + oak + 
enaturalcork)           (2) 

Decreasing the number of grapes allows the remaining to concentrate polyphenols, enhancing 
the wine's sensory attributes. Fruit thinning and grape sorting favor the polyphenolic 
concentration of the wine, and discarding damaged and diseased grapes before fermentation 
allows one to make wine from the best grapes of each vintage. Using oak barrels (French or 
American) to age the wine is a non-invasive practice highlighting each terroir singularity. The 
use of natural cork prevents the passage of external oxygen to the wine, which would damage 
its quality, allowing for better aging (Depetris-Chauvin et al., 2023).  

Table 3 presents six combinations of above- or below-average quality and the conditions of 
exporter or non-exporter. The criteria for dividing the samples were taking first the average of 
the “pursued quality” variable for the whole sample. It is 2.36. Since the variable can take the 
values 0, 1, 2, 3, 4, and 5, and since the integer more proximate to 2.36 is 2, we take that value 
to split the samples. We determine two samples with no intersections: Sample A comprehends 
142 observations of Above-average quality (pursued quality >= 2, on average 3.06), and 
Sample B includes 59 observations of Below-average quality (pursued quality < 2, on average 
0.68). We called them Sample A and B for Above- and Below-Average Pursued Quality. 

In both samples, there are exporters (both above and below the export intensity sample 
averages) and non-exporters. We estimate separate production functions using OLS and 
separate SFA functions using ML for Samples A and B, grouping the results within the six 
subsamples. 

Table 3: Sampling and subsampling criteria 
Quality level 

Market 

Pursued_quality = or >2 Pursued_quality <2 

 Whole  Sample 

Exporters and non-exporters Sample A - Model A 

N = 142 

Sample B - Model B 

N = 59 

 Exporters  

Higher Intensity Exporters (above sample averages) Subsample A1 

Prop-exports >= 0.394 

n = 72 

Subsample B1 

Prop-exports >= 0.365 

n = 30 

Lower Intensity Exporters (below sample averages) Subsample A2 

0 < Prop-exports < 0.394 

n = 27 

Subsample B2 

0 < Prop-exports < 0.365 

n = 18 

 Nonexporters  

Non-exporting at all Subsample A3 

Prop-exports = 0 

n = 43 

Subsample B3 

Prop-exports = 0 

n = 11 

Source: Authors’ elaboration 
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Table 4 presents the descriptive statistics of the variables. Firstly, we present the whole 
dataset. The size of the set of observations (not considering missing values) is 201. The average 
winery of the sample produces 4.6 million liters annually. However, this number masks a 
variety of winery sizes, being the largest producer of 312 million liters. The average winery of 
the sample has a surface of 204 hectares (and a maximum of 7,000) and employs an average 
of 108 persons (60 percent temporary). The yield for the entry category of wine is 1.21 tons 
per hectare for the whole sample. The percentage of exported production is 37 percent on 
average. After the descriptive statistics for the whole sample, we present the same information 
for the two subsamples for which we are performing the efficiency analysis. From the 
observation and comparison of the data, the subsamples are different.  

For the subsamples, we added the average productivity for each one of the three factors of 
production (land, labor, and capital). These three pairs of ratios allow us to characterize the 
samples. Sample A, for the Above-average “pursued quality index,” has lower average labor 
and capital productivity, denoting the intensity of factors needed to produce the highest 
quality products. The exception is the output (wine) on the surface (hectares) ratio. The 
pursued quality index differs significantly on average between samples. However, the average 
export intensity is almost the same in both subsamples. 

Table 4: Descriptive statistics of the variables 

Variable Obs Mean Std. dev. Min Max 

Whole Sample      

ProdinL (million liters) 201 4.5846 26.5203 0.0003 312.0000 

Surface (ha) 201 203.8831 645.8972 1.0000 7000.0000 

Entryyield (tons/ha) 201 1.2117 0.6678 0.2000 4.0000 

Capital_index 201 0.5807 0.1798 0.0556 1.0000 

Labor 201 107.8706 348.5515 1.0000 3000.0000 

prop_ownharvest 201 0.7606 0.2981 0.1250 1.0000 

prop_temp 201 0.5980 0.2246 0.0000 1.0000 

pursued_qualityy 201 2.3632 1.3937 0.0000 5.0000 

prop_exports 201 0.3739 0.3513 0.0000 1.0000 

Variable Obs Mean Std. dev. Min Max 

Above average quality subsample      

ProdinL (million liters) 142 1.2977 4.7203 0.0003 36.0000 

Surface (ha) 142 109.2479 286.9861 1.0000 2410.0000 

Entryyield (tons/ha) 142 1.0581 0.5936 0.2500 4.0000 

Capital_index 142 0.5657 0.1658 0.0556 1.0000 

Labor 142 57.7183 119.8011 1.0000 1100.0000 

prop_ownharvest 142 0.7984 0.2882 0.1250 1.0000 

prop_temp 142 0.6028 0.2219 0.0000 1.0000 

pursued_qualityy 142 3.0634 0.9908 2.0000 5.0000 

prop_exports 142 0.3651 0.3642 0.0000 1.0000 

outputHa 142 0.0282 0.2513 0.0000 3.0000 

outputK 142 1.8166 6.1296 0.0005 52.3636 

outputL 142 0.0133 0.0222 0.0000 0.1500 

Variable Obs Mean Std. dev. Min Max 

Below average quality subsample      

ProdinL (million liters) 59 12.4954 47.7598 0.0006 312.0000 
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Surface (ha) 59 427.2932 1079.9540 1.8000 7000.0000 

Entryyield (tons/ha) 59 1.5811 0.6960 0.2000 4.0000 

Capital_index 59 0.6168 0.2070 0.1111 1.0000 

Labor 59 228.5763 602.5401 1.0000 3000.0000 

prop_ownharvest 59 0.6695 0.3042 0.1250 1.0000 

prop_temp 59 0.5862 0.2323 0.0000 1.0000 

pursued_qualityy 59 0.6780 0.4713 0.0000 1.0000 

prop_exports 59 0.3949 0.3202 0.0000 1.0000 

outputHa 59 0.0152 0.0140 0.0000 0.0571 

outputK 59 14.5323 50.4891 0.0010 330.3529 

outputL 59 0.0491 0.0798 0.0000 0.4000 

Source: Authors’ elaboration. 

 

3.2 Method 

The rationale behind efficiency frontiers is that some DMUs, such as firms, state dependencies, 
or any other organization in or out of the markets, use resources to attain specific outputs and 
use inputs with different efficiency levels. Some would use fewer resources than others to 
produce specific outputs. Producing more with less or using fewer inputs to produce a given 
output defines best practices. A sample's set of best practices defines a “frontier” susceptible 
to being estimated. The econometric approach and the mathematical programming method 
are general methodologies for constructing efficiency frontiers. The first is stochastic 
(distinguishing within the error term, pure randomness -or noise- from inefficiency) and 
parametric (assuming a specific functional form for the relations it studies - production or cost 
functions- and estimating its parameters). The second one is most of the time deterministic 
(assuming that all the residuals of the estimates can be deemed as inefficiency) and non-
parametric (not assuming a functional form between the variables and thus not estimating its 
parameters) (Kumbhakar et al., 2015). 

The estimates of stochastic frontiers use the techniques under the umbrella of SFA, which 
applies econometrics to estimate production and cost frontiers, mainly. The former allows for 
the estimation of technical efficiency, while the latter permits the estimation of total (technical 
and allocative) efficiency. For the first set of estimates, it is necessary to access information on 
outputs and inputs, as well as contextual (“environmental”) or non-controlled inputs or 
qualitative aspects of the productive process under the control of the DMUs. For the second 
set of estimates, the demand for information includes data on costs, outputs, and relative 
prices of inputs. According to the type of database the researcher faces, it is possible to 
estimate cross-sectional or panel models. 

The calculation of efficiency departs from the error term of the frontier regression. In the real 
world, DMUs would have production or costs on top or below other units, and the residues 
capture divergencies. Efficient units are situated in the best practice frontiers; nevertheless, 
not all divergencies can be attributed to inefficiency, and some part of the differences in 
performance are random. Thus, the parametric techniques allow for separating randomness 
from pure inefficiency. The method permits a series of statistical tests on the goodness of the 
estimates; however, it does not provide clues for the mathematical form of the relationship 
between the variables, nor the proper form of separating the two components nor the error 
term, requiring several decisions from the investigators. 
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DEA is the most used non-parametric method (and probably the most used frontier method 
at all). It is a very flexible method; it builds the frontier with only a subset of the sample (the 
observations lying on the frontier), which allows working with small databases; however, it is 
sensitive to outliers, which is either a problem or an asset, allowing their detection in large 
datasets. Another disadvantage is that it does not allow statistical tests of the results (Coelli et 
al., 1998). 

Faria et al. (2021) state that the SFA model arose from the theoretical perspective of a frontier 
of efficient production, given by a production function. In a production function, outputs are 
explained by inputs plus environmental variables. These are controls, from the statistical point 
of view, or “non-discretionary inputs, from the production theory view. They provide context 
to compare comparable units. The real functional form is unknown; the more common choice 
is the Cobb-Douglas, which is simple and easy to interpret, and the Trans logarithmic (or “Trans 
log”), which addresses squared and interaction terms of the variables. The Trans logarithmic 
function has the advantage of being more flexible than Cobb-Douglas. It does not impose a 
priori constraints on input substitution feasibility and allows scale economies to vary jointly 
with the output level. On the other hand, because it includes more coefficients to be 
estimated, it demands more data (consumes more degrees of freedom) than the Cobb-
Douglas, and sometimes the signs of the coefficients are not easy to interpret. We opted for 
the Cobb-Douglas because of the reduced size of our samples, and we estimated it in the 
logarithms of the variables. Thus, the estimated coefficients can be interpreted as elasticities.  

The composed error term 𝜀𝑖 is the sum of 𝑣𝑖, representing measurement and statistical errors 
and a one-sided disturbance 𝑢𝑖, that represents inefficiency. Additionally, 𝑢𝑖  and 𝑣𝑖  are 
assumed to be independent of each other as well as independent and identically distributed 
(iid), following the density of 𝜀𝑖 yields: 

 
𝑓𝜀𝑖

(𝜀) =
2

𝜎
ø (

𝜀

𝜎
) [1 − 𝛷 (

𝜀𝜆

𝜎
)] , −∞ ≤ 𝜀 ≤ +∞ 

 
(3) 

Where ø(. ) is the standard normal probability density function (pdf), 𝛷(∙), is the standard 
normal cumulative density function (CDF), 𝜎2 = (𝜎𝑣

2 + 𝜎𝑢
2), and 𝜆 = 𝜎𝑢/𝜎𝑣. Therefore, the 

observed composite error 𝜀𝑖 for a log-log production function, where 𝑦𝑖 and 𝑓(𝑥𝑖) are the 
observed and estimated outputs for the “I” DMI, is given by: 

 
𝜀𝑖 = ln 𝑦𝑖 − ln 𝑓(𝑥𝑖) ; 𝑖 = 1, … , 𝑛  

 
(4) 

As Faria et al. (2021) state, in their original proposal, Aigner et al. (1977) assumed a half-
normal distribution for 𝑢𝑖. Other distributions typically used are the exponential (Meeusen 
and van Den Broeck, 1977), the truncated normal (Stevenson, 1980), or the gamma 
distributions (Greene, 1980a, 1980b). The SFA model is estimated through maximum 
likelihood (ML) methods and in two steps: firstly, the estimation of the parameters of the 
model and secondly, the point estimates of inefficiency through the mean of the conditional 
distribution, which is 𝐸(𝑢|𝜀̂). Thus, in log-log functional form, productive efficiency (PE) 
(Battese and Coelli, 1988) is given by 

 
𝑃𝐸 = 𝐸(𝑢|𝜀̂) = exp(−𝑢̂) 

 
(5) 

The conditional expectation is defined by: 
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𝐸(𝑢𝑖|𝜀𝑖) =  

𝜎𝑣𝜎𝑢

𝜎
[−

𝜀𝑖𝜆

𝜎
+  

ø(
𝜀𝑖𝜆
𝜎

)

1 − 𝛷(
𝜀𝑖𝜆
𝜎 )

] 

 

(6) 

This paper uses the standard model for estimating efficiency using a Stochastic Frontier 
Analysis (SFA) for a production frontier in cross-sectional databases, as described by 
Kumbhakar et al. (2015). Its general formula is: 

𝑦𝑖 = 𝑓(𝑥𝑖; 𝛽; 𝑧𝑖) exp (𝑣𝑖 − 𝑢𝑖)                            
(7)  

Where Yi is the observed output for each DMU i; xi is the input vector; selective 
“environmental” and quality variables would be included in the preceding basic models as 
control variables, zi is the environmental variable vector; β is the unknown parameter vector 
to estimate; 𝑣𝑖  is a random error (independently and identically distributed, with zero mean 
and positive variance), 𝑢𝑖  is an inefficiency parameter (whose distribution is assumed to be 
exponential in this case). Besides, 𝑢𝑖  and 𝑣𝑖  are independently distributed from each other and 
the model’s covariates. In logarithms, 

𝑙𝑛𝑦𝑖 = 𝑙𝑛𝑦𝑖∗ − 𝑢𝑖                                                                                                                                   (8) 

Where: 

𝑙𝑛𝑦𝑖∗ = 𝑓(𝑥𝑖; 𝛽, 𝑧𝑖) + 𝑣𝑖 

The term 𝑢𝑖 is the log difference between the maximum 𝑙𝑛𝑦𝑖∗ and the actual output 𝑙𝑛𝑦𝑖 or 
the percentage by which output can be increased using the same inputs if production is fully 
efficient. It gives the percentage of output that is lost due to technical inefficiency. The 
estimated value of  𝑢𝑖  is known as the output-oriented (technical) inefficiency, where a value 
close to 0 implies nearness to total efficiency. 

−𝑢𝑖 = 𝑙𝑛
𝑦𝑖

𝑦𝑖∗
                                                                                                                                           (9) 

Given that, 𝑢𝑖 ≥ 0, the ratio (3) is bounded between 0 and 1 (meaning 1 that the DMU is fully 
efficient), with a value equal to 1 implying that the firm is fully efficient technically.  

3.3 Models 

Our model to be estimated is a Cobb-Douglas in logarithms, 

𝑙𝑛 𝑦𝑖 = ∝  + 𝛽 𝑙𝑛𝑋𝑖 + 𝛿 𝑍𝑖 +  𝜀𝑖                                                                                           (10) 

Where i are the wineries, yi is their output, Xi is the input vector (land, capital, labor, grape), Zi 
is the vector of environmental variables, and εi is the composite error term. 

According to Faria et al. (2021), cross-sectional SFA models do not allow for consistent 
estimates of technical efficiency, bringing only an estimate of the conditional mean of the 
efficiency level. Additionally, the cross-sectional model assumes the error components are not 
correlated with the regressors, which is problematic, considering that inefficiency derives from 
unobservable managerial capacities and is not independent of the input levels chosen by 
DMUs. Panel data would determine how efficiency varies between firms and over time. 
However, given that our database is a cross-section, we estimate the conditional mean of the 
efficiency level.  

4. Results: Presentation and Discussion 
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In Table 5, we present the production function estimates of the two models using OLS for 

Cobb-Douglas in logs specifications. The signs of the coefficients are the expected for the input 

and raw material variables when the estimated coefficients are significantly different from 

zero. In the Below Average Pursued Quality subsample, only the log of the surface is significant 

in explaining the volumes of wine produced. Instead, in the Above Average Pursued Quality 

subsample, surface, entry yield, and labor are significant in explaining production. Also, in the 

latter model, the proportion of own harvest is significantly different from zero and negative (if 

the firm purchases part of its grape, it is more productive), and the same significance and sign 

holds for the proportion of temporary employees (the more significant the proportion of 

temporary, the lower the production). The OLS model for the Above Average Pursued Quality 

subsample explains 67.5 percent of the variance of the log or production, whereas for the 

Below Average Pursued Quality subsample, the R-square is 78.6 percent.  

Thus, we can answer our first investigative question: We find different technologies to produce 

Above-and Below-Average Pursued Quality. The sum of the significant coefficients of factors 

capital, labor, and land for both samples is 1 for sample A and slightly greater than 1 for sample 

B, indicating that there are no economies of scale in the first case. In contrast, there are modest 

economies of scale in the second case. 

Table 5: OLS Production Function Estimates 
Dependent:         

ln_ProdinL 
Above Average 
Quality Sample   

Below Average 
Quality Sample  

          

ln_Surface 0.662*** (0.188) 1.166*** (0.150) 

     
ln_Entryyield 0.298* (0.160) 0.515 (0.329) 

     
ln_new_capital 0.463 (0.290) -0.502 (0.466) 

     
ln_labor 0.372* (0.196) 0.118 (0.137) 

     
prop_ownharvest -1.510*** (0.375) -0.910 (0.600) 

     
prop_temp -1.381*** (0.452) -0.424 (0.491) 

     
Constant -3.223*** (0.651) -5.538*** (0.927) 

     

F stat 128.4400   82.8400   

Prob. > F 0.0000   0.0000   

Observations 142   59   

R-squared 0.675    0.786    

Robust standard errors are in parentheses.    
*** p<0.01, ** p<0.05, * p<0.1   

Source: Authors’ elaboration. 

Table 6 presents our efficiency SFA models, estimated by ML, and we assume an exponential 

distribution for the error term. Land and entry-yield results significantly differ from zero, and 

the coefficients are positive, as expected. The absolute value of the elasticities indicates the 

need for more land and grapes in the case of the Below Average Pursued Quality Wines 
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subsample, as expected. The log of capital is not significant in explaining the log of wine 

production in either of the models. The log of labor is positive and significantly different from 

zero in the Above Average Pursued Quality subsample and not significant in the Below Average 

Pursued Quality subsample.  

Among the environmental variables, the signs are negative. Both variables are significant in 

both models. While the estimated coefficients are similar in the proportion of own harvest, 

the negative effect of the proportion of temporary employees on output is more pronounced 

in the case of the Above Average Pursued Quality subsample.  

Table 6: SFA Technical Efficiency Estimates (exponential model) 
Dependent: Above Average Pursued Quality   Below Average Pursued Quality  
ln_ProdinL (pursued_quality>=2)   (pursued_quality<2)   

     
ln_Surface 0.703*** (0.209) 0.934*** (0.0687) 

     
ln_Entryyield 0.322* (0.167) 0.997*** (0.206) 

     
ln_new_capital 0.475 (0.291) -0.310 (0.372) 

     
ln_labor 0.357* (0.212) 0.110 (0.0833) 

     
prop_ownharvest -1.723*** (0.352) -1.768*** (0.279) 

     
prop_temp -0.855** (0.405) -0.663* (0.360) 

     
Constant -2.645*** (0.672) -2.807*** (0.443) 

     
Sigma_u 0.80577*** (0.1830) -0.026 (0.446) 

sigma_v 0.80532*** (0.15967) -3.524*** (1.088) 

Lambda 1.00056*** (0.27499) 5.749 (0.285) 

Gamma 0.50028  0.5  

Log-likelihood -216.5646  -67.1661  

Wald Chi2 925.47  2381.26  

Prob > chi2 0.0000  0.0000  

Observations 142  59  
Robust standard errors in parentheses 
*** p<0.01, ** p<0.05, * p<0.1 

Source: Authors’ elaboration. 

Lambda (λ) indicates the value of the ratio 
𝜎𝑢

𝜎𝑣
 and the parameter gamma (γ) indicates the share 

of total variance accounted for by inefficiency (variance of inefficiency over the sum of the 

variances of inefficiency and randomness) or the ratio 
𝜎𝑢

2

𝜎𝑢
2+𝜎𝑣

2. Their values imply that our 

models explain 50 percent of inefficiency within the error term of each regression. 

Concerning our second and third investigative questions, in Table 7, we present descriptive 
statistics of efficiency for each subsample (Above- and Below- Average Pursued Quality) and 
their further subsamples (Above the Average Export Intensity of the subsample, Below the 
Average Export Intensity of the subsample, and Non-Exporters), and in Table 8, we show 
correlations between the efficiency scores of the models and partial productivity. The 
efficiency mean of the wineries producing Above-Average Pursued Quality wines is 0.56, with 
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a standard deviation of 0.16. For the Below-Average Pursued Quality subsample, the numbers 
are respectively 0.53 and 0.28. These numbers should not be compared since they depend on 
the relative position of each winery within its subsample and frontier.  

We find differences when splitting each subsample into groups based on export intensity: 
exporters with higher export intensity than the mean of the sample, exporters with lower 
export intensity than the mean of the sample, and non-exporters.  

Within the Above-Average Pursued Quality subsample, wineries with higher export intensity 
exhibit greater average efficiency and a higher pursued quality index on average (0.59, 3.21). 
Wineries that export but with lower intensity than the mean of the subsample, show lower 
efficiency levels and quality index (0.53, 2.70). Non-exporters have the lowest efficiency levels 
(0.52), with an intermediate pursued quality index of 3.05, compared with other wineries in 
the subsample. 

Concerning the Below-Average Pursued Quality sample, the efficiency and pursued quality 
index is higher for the low-intensity exporting wineries than for those with higher export 
intensity (0.60 and 0.70 against 0.48 and 0.67). Non-exporters have lower efficiency but higher 
pursued quality among the three subsamples in this sample (0.49 and 0.82). 

We present in Appendix A two Tables with the wineries ranked by efficiency, identified by 
internal codes to preserve the anonymity of respondents. 

 
Table 7: Descriptive statistics of efficiency models and subsamples. 

Technical efficiency Mean Std. Dev. Min Max 

Technical Efficiency (Above-Average  
Pursued Quality sample, N = 142) 0.5634 0.1654 0.0015 0.8840 

Technical Efficiency (Below-Average 
Pursued Quality sample, N = 59) 0.5284 0.2784 0.0005 0.9199 

Sample and subsamples Statistic Technical Efficiency Prop exports Pursued quality 

pursued_quality >= 2 Average 0.56337 0.37 3.06 

N = 142 Std. Dev. 0.16537 0.36 0.99 

Exports above average Average 0.59724 0.66 3.21 

n = 72 Std. Dev. 0.14371 0.27 0.98 

Exports below average Average 0.53156 0.15 2.70 

n = 27 Std. Dev. 0.20041 0.09 0.95 

Non-exporters Average 0.52662 0.00 3.05 

n = 43 Std. Dev. 0.16742 0.00 1.00 

Samples and subsamples Statistic Technical Efficiency Prop exports Pursued quality 

pursued_quality<2 Average 0.5284 0.39 0.68 

N = 59 Std. Dev. 0.3062 0.43 0.47 

Exports above average Average 0.4763 0.67 0.67 

n = 30 Std. Dev. 0.2734 0.19 0.48 

Exports below average Average 0.6022 0.13 0.70 

n = 18 Std. Dev. 0.2454 0.12 0.47 

Non-exporters Average 0.4986 0.00 0.82 

n = 11 Std. Dev. 0.3184 0.00 0.40 

Source: Authors’ elaboration. 
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Table 8 shows the correlation between efficiency scores, partial productivity ratios, and two 
selected variables: the proportion of exports and pursued quality. The correlation between 
efficiency and these variables is very low. The correlation between efficiency and input 
productivity is positive but low, except for labor. The highest correlation is between the 
productivity of capital and labor in the high-pursued-quality subsample and between the 
productivity of capital and land in the below pursued quality subsample. 
 

Table 8 Correlations between efficiency, partial productivity, and selected variables 

N = 142 Technical Efficiency Prop exports Pursued quality outputHa outputK outputL 

Technical Efficiency 1.0000      

prop_exports 0.0574 1.0000     

pursued_quality 0.0068 0.1713 1.0000    

outputHa 0.1799 0.0356 0.0782 1.0000   

outputK 0.1767 0.0651 -0.0411 0.0540 1.0000  

outputL 0.4424 0.0004 -0.0179 0.2608 0.4795 1.0000 

N = 59 Technical Efficiency Prop exports Pursued quality outputHa outputK outputL 

Technical Efficiency 1.0000      

prop_exports -0.0878 1.0000     

pursued_quality 0.0379 -0.0796 1.0000    

outputHa 0.4735 -0.0306 0.0133 1.0000   

outputK 0.0714 0.1331 0.1086 0.5014 1.0000  

outputL 0.2223 -0.2588 -0.0129 0.3176 0.1622 1.0000 

Source: Authors’ elaboration. 

5. Conclusions 

 Argentina’s evolution from a prominent domestic wine producer to a notable international 

player illustrates the transformative impact of strategic quality improvements. The increase in 

the relative price of Argentine wines over the past decades not only reflects a rise in perceived 

quality but also indicates a successful shift towards premium positioning in the global market. 

Our analysis reveals important differences in production practices and efficiencies between 

wineries focused on high-quality versus lower-quality wines. The differentiation in production 

functions highlights that wineries producing high-quality wines employ specialized techniques 

and resource combinations that do not benefit from economies of scale. This contrasts with 

lower-quality producers, who experience modest economies of scale. These findings suggest 

that high-quality production involves more complex and refined processes that are less scale-

sensitive but potentially more resilient in establishing a competitive edge through 

differentiation. 

The study also emphasizes the role of export intensity in shaping production efficiency. 

Wineries with higher export volumes exhibit better efficiency and higher pursued quality 

indices compared to those with lower export intensity. This implies that engaging in 

international markets not only enhances efficiency but also drives improvements in quality. 

Non-exporting wineries, in contrast, demonstrate lower efficiency and intermediate quality 

levels, suggesting that the lack of export activity may limit their opportunities for achieving 

higher quality and operational efficiency. 
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Additionally, the study examines the relationship between export intensity and production 

efficiency. Wineries with higher export intensity tend to exhibit higher efficiency and better 

pursued quality indices compared to those with lower export intensity. The observed 

correlation suggests that wineries engaged in higher levels of export activity may also 

demonstrate improved efficiency and quality, but it does not imply a direct causal relationship. 

The findings from this study may have broader implications for other emerging economies in 

the agri-food sector. They underscore the importance of focusing on quality differentiation and 

innovation as strategies for enhancing global competitiveness. For emerging markets, investing 

in advanced production techniques, improving quality management practices, and fostering 

innovation can contribute to better positioning in international markets and more significant 

export opportunities. 

Supporting export-oriented strategies and creating conducive environments for quality 

enhancement can also benefit emerging economies. By providing resources and support for 

quality improvements and market access, governments and industry stakeholders can help 

enhance the global competitiveness of their agri-food sectors. 

While the cross-sectional nature of the data limits the ability to track changes over time, future 

research using panel data could offer more dynamic insights into how efficiency and quality 

evolve with time and market engagement. Such research could provide additional insights into 

the dynamics of production efficiency and quality differentiation, contributing to a deeper 

understanding of their relationships and impacts on competitiveness. 

In summary, this study provides valuable insights into the relation between quality 

differentiation, production efficiency, and export intensity in the Argentine wine industry. 

These insights are relevant not only for Argentina but also for other emerging markets aiming 

to leverage quality improvements to strengthen their positions in global agri-food markets. 
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Appendix A. Wineries and their relative efficiency within each sample  

Tables A1 and A2 present the rankings of each sample by efficiency levels. Both tables have 

the same logic: Columns 1 to 4 present the ranking order by decreasing the order of efficiency 

scores without any other consideration. In contrast, columns 5 to 8 reorder the rankings 

grouping by export proportion and decreasing efficiency scores. In both tables, columns 5 to 8 

permit differentiation between wineries with exports above the sample's average, below the 

sample's average (shadowed in gray), and non-exporters. 

 

Table A1: Sample A, Pursued Quality >= 2 
Winery 

Code teAe Prop exports Pursued quality 
Winery 

Code teAe Prop exports Pursued quality 

90 0.8840 0.50 4 134 0.7208 1.00 2 

160 0.8390 0.00 5 16 0.7067 1.00 5 

171 0.7964 0.50 3 77 0.6922 1.00 3 

54 0.7881 0.30 2 153 0.6891 1.00 3 

97 0.7751 0.00 4 26 0.6751 1.00 3 

126 0.7511 0.70 4 222 0.6635 1.00 3 

190 0.7388 0.05 2 182 0.6624 1.00 4 

78 0.7262 0.50 5 63 0.6549 1.00 2 

135 0.7227 0.30 2 51 0.6500 1.00 5 

151 0.7211 0.15 2 55 0.6433 1.00 2 

134 0.7208 1.00 2 30 0.6368 1.00 3 

50 0.7202 0.00 2 136 0.5842 1.00 5 

46 0.7197 0.70 2 100 0.5841 1.00 4 

164 0.7187 0.30 3 67 0.5778 1.00 3 

132 0.7169 0.15 2 124 0.5527 1.00 5 

33 0.7167 0.05 2 152 0.5505 1.00 5 

166 0.7093 0.30 3 140 0.5315 1.00 3 

99 0.7088 0.50 3 73 0.5105 1.00 2 

16 0.7067 1.00 5 74 0.4947 1.00 4 

220 0.7051 0.05 2 83 0.4089 1.00 4 

61 0.7040 0.50 4 95 0.3507 1.00 4 

111 0.7009 0.05 3 64 0.3416 1.00 4 

117 0.6956 0.00 3 208 0.2951 1.00 2 

216 0.6926 0.15 2 130 0.0015 1.00 2 

77 0.6922 1.00 3 126 0.7511 0.70 4 

104 0.6911 0.70 3 46 0.7197 0.70 2 

19 0.6892 0.30 3 104 0.6911 0.70 3 

153 0.6891 1.00 3 39 0.6885 0.70 5 

39 0.6885 0.70 5 123 0.6401 0.70 2 

187 0.6858 0.00 3 71 0.6167 0.70 2 

80 0.6833 0.15 2 125 0.6165 0.70 4 

184 0.6819 0.15 4 199 0.5586 0.70 3 

230 0.6809 0.50 2 37 0.5046 0.70 3 

93 0.6785 0.50 2 138 0.4606 0.70 4 

156 0.6752 0.50 2 96 0.4358 0.70 4 
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26 0.6751 1.00 3 48 0.2772 0.70 4 

35 0.6748 0.50 4 90 0.8840 0.50 4 

122 0.6745 0.00 3 171 0.7964 0.50 3 

17 0.6700 0.00 3 78 0.7262 0.50 5 

47 0.6688 0.30 3 99 0.7088 0.50 3 

222 0.6635 1.00 3 61 0.7040 0.50 4 

18 0.6626 0.00 2 230 0.6809 0.50 2 

182 0.6624 1.00 4 93 0.6785 0.50 2 

227 0.6610 0.00 4 156 0.6752 0.50 2 

165 0.6608 0.50 2 35 0.6748 0.50 4 

215 0.6584 0.30 4 165 0.6608 0.50 2 

139 0.6552 0.15 4 53 0.6551 0.50 4 

53 0.6551 0.50 4 198 0.6412 0.50 3 

63 0.6549 1.00 2 101 0.6219 0.50 4 

72 0.6514 0.30 4 88 0.6181 0.50 2 

51 0.6500 1.00 5 118 0.6167 0.50 2 

213 0.6483 0.00 5 79 0.6122 0.50 2 

210 0.6471 0.00 2 84 0.5950 0.50 3 

202 0.6446 0.00 2 196 0.5707 0.50 3 

55 0.6433 1.00 2 191 0.5470 0.50 2 

198 0.6412 0.50 3 12 0.5287 0.50 3 

123 0.6401 0.70 2 219 0.3842 0.50 3 

14 0.6389 0.00 2 56 0.3836 0.50 4 

30 0.6368 1.00 3 66 0.2160 0.50 3 

1 0.6352 0.05 4 54 0.7881 0.30 2 

24 0.6314 0.30 2 135 0.7227 0.30 2 

174 0.6299 0.05 3 164 0.7187 0.30 3 

157 0.6272 0.05 2 166 0.7093 0.30 3 

214 0.6235 0.30 4 19 0.6892 0.30 3 

149 0.6230 0.30 4 47 0.6688 0.30 3 

101 0.6219 0.50 4 215 0.6584 0.30 4 

65 0.6185 0.30 2 72 0.6514 0.30 4 

88 0.6181 0.50 2 24 0.6314 0.30 2 

118 0.6167 0.50 2 214 0.6235 0.30 4 

71 0.6167 0.70 2 149 0.6230 0.30 4 

125 0.6165 0.70 4 65 0.6185 0.30 2 

4 0.6163 0.00 4 200 0.5791 0.30 4 

79 0.6122 0.50 2 205 0.5193 0.30 2 

108 0.6095 0.00 2 86 0.5027 0.30 2 

143 0.6078 0.05 3 180 0.4870 0.30 3 

181 0.5981 0.00 4 218 0.3963 0.30 5 

84 0.5950 0.50 3 116 0.2955 0.30 2 

183 0.5939 0.00 3 42 0.2272 0.30 2 

6 0.5871 0.15 4 151 0.7211 0.15 2 

136 0.5842 1.00 5 132 0.7169 0.15 2 

100 0.5841 1.00 4 216 0.6926 0.15 2 
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31 0.5795 0.00 3 80 0.6833 0.15 2 

200 0.5791 0.30 4 184 0.6819 0.15 4 

67 0.5778 1.00 3 139 0.6552 0.15 4 

89 0.5757 0.00 2 6 0.5871 0.15 4 

8 0.5751 0.00 2 212 0.5739 0.15 4 

212 0.5739 0.15 4 23 0.5310 0.15 2 

177 0.5725 0.00 3 36 0.2448 0.15 4 

217 0.5714 0.00 2 107 0.1896 0.15 2 

196 0.5707 0.50 3 44 0.0022 0.15 2 

207 0.5629 0.00 4 190 0.7388 0.05 2 

199 0.5586 0.70 3 33 0.7167 0.05 2 

9 0.5566 0.00 2 220 0.7051 0.05 2 

124 0.5527 1.00 5 111 0.7009 0.05 3 

25 0.5518 0.00 3 1 0.6352 0.05 4 

152 0.5505 1.00 5 174 0.6299 0.05 3 

191 0.5470 0.50 2 157 0.6272 0.05 2 

140 0.5315 1.00 3 143 0.6078 0.05 3 

23 0.5310 0.15 2 94 0.2828 0.05 2 

12 0.5287 0.50 3 160 0.8390 0.00 5 

20 0.5209 0.00 4 97 0.7751 0.00 4 

205 0.5193 0.30 2 50 0.7202 0.00 2 

73 0.5105 1.00 2 117 0.6956 0.00 3 

37 0.5046 0.70 3 187 0.6858 0.00 3 

185 0.5039 0.00 3 122 0.6745 0.00 3 

34 0.5038 0.00 5 17 0.6700 0.00 3 

86 0.5027 0.30 2 18 0.6626 0.00 2 

189 0.4969 0.00 4 227 0.6610 0.00 4 

74 0.4947 1.00 4 213 0.6483 0.00 5 

188 0.4939 0.00 2 210 0.6471 0.00 2 

21 0.4892 0.00 2 202 0.6446 0.00 2 

180 0.4870 0.30 3 14 0.6389 0.00 2 

22 0.4673 0.00 2 4 0.6163 0.00 4 

192 0.4622 0.00 2 108 0.6095 0.00 2 

138 0.4606 0.70 4 181 0.5981 0.00 4 

127 0.4367 0.00 3 183 0.5939 0.00 3 

96 0.4358 0.70 4 31 0.5795 0.00 3 

7 0.4243 0.00 2 89 0.5757 0.00 2 

83 0.4089 1.00 4 8 0.5751 0.00 2 

218 0.3963 0.30 5 177 0.5725 0.00 3 

219 0.3842 0.50 3 217 0.5714 0.00 2 

56 0.3836 0.50 4 207 0.5629 0.00 4 

195 0.3809 0.00 3 9 0.5566 0.00 2 

95 0.3507 1.00 4 25 0.5518 0.00 3 

64 0.3416 1.00 4 20 0.5209 0.00 4 

3 0.3171 0.00 3 185 0.5039 0.00 3 

15 0.2967 0.00 4 34 0.5038 0.00 5 
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116 0.2955 0.30 2 189 0.4969 0.00 4 

208 0.2951 1.00 2 188 0.4939 0.00 2 

2 0.2860 0.00 3 21 0.4892 0.00 2 

94 0.2828 0.05 2 22 0.4673 0.00 2 

48 0.2772 0.70 4 192 0.4622 0.00 2 

36 0.2448 0.15 4 127 0.4367 0.00 3 

42 0.2272 0.30 2 7 0.4243 0.00 2 

66 0.2160 0.50 3 195 0.3809 0.00 3 

13 0.2009 0.00 4 3 0.3171 0.00 3 

228 0.1935 0.00 5 15 0.2967 0.00 4 

107 0.1896 0.15 2 2 0.2860 0.00 3 

110 0.1517 0.00 2 13 0.2009 0.00 4 

70 0.0926 0.00 4 228 0.1935 0.00 5 

44 0.0022 0.15 2 110 0.1517 0.00 2 

130 0.0015 1.00 2 70 0.0926 0.00 4 

Source: Authors’ elaboration 

 

Table A2: Sample B, Pursued Quality < 2 
Winery 

Code teAe Prop exports Pursued quality 
Winery 

Code teAe Prop exports Pursued quality 

68 0.9199 0.15 0 45 0.8200 1.00 1 

147 0.9190 0.30 1 109 0.8157 1.00 0 

144 0.9107 0.00 1 105 0.6862 1.00 0 

32 0.9083 0.50 1 38 0.6111 1.00 1 

173 0.8575 0.05 1 98 0.5461 1.00 1 

203 0.8531 0.00 1 75 0.1197 1.00 0 

87 0.8366 0.50 0 103 0.8278 0.70 1 

103 0.8278 0.70 1 146 0.6982 0.70 1 

145 0.8272 0.50 1 5 0.6418 0.70 1 

45 0.8200 1.00 1 62 0.5418 0.70 1 

109 0.8157 1.00 0 167 0.5069 0.70 1 

169 0.8058 0.15 1 193 0.3121 0.70 0 

179 0.8011 0.00 0 142 0.2591 0.70 1 

223 0.7756 0.15 0 159 0.1976 0.70 0 

197 0.7662 0.15 0 85 0.1842 0.70 1 

204 0.7273 0.15 1 226 0.1314 0.70 0 

40 0.7232 0.15 0 32 0.9083 0.50 1 

129 0.7192 0.00 1 87 0.8366 0.50 0 

60 0.7165 0.50 0 145 0.8272 0.50 1 

146 0.6982 0.70 1 60 0.7165 0.50 0 

105 0.6862 1.00 0 69 0.6585 0.50 1 

28 0.6737 0.30 1 121 0.6287 0.50 1 

194 0.6597 0.30 1 59 0.4183 0.50 1 

69 0.6585 0.50 1 162 0.3868 0.50 1 

81 0.6496 0.05 1 229 0.2959 0.50 1 
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5 0.6418 0.70 1 52 0.2499 0.50 1 

170 0.6382 0.30 0 137 0.1744 0.50 1 

121 0.6287 0.50 1 133 0.1344 0.50 0 

76 0.6183 0.15 1 128 0.1165 0.50 0 

211 0.6180 0.30 1 102 0.0382 0.50 1 

38 0.6111 1.00 1 147 0.9190 0.30 1 

168 0.5733 0.00 1 28 0.6737 0.30 1 

209 0.5565 0.00 0 194 0.6597 0.30 1 

98 0.5461 1.00 1 170 0.6382 0.30 0 

62 0.5418 0.70 1 211 0.6180 0.30 1 

167 0.5069 0.70 1 131 0.1216 0.30 1 

176 0.5068 0.00 1 68 0.9199 0.15 0 

58 0.5034 0.05 0 169 0.8058 0.15 1 

49 0.4253 0.15 1 223 0.7756 0.15 0 

59 0.4183 0.50 1 197 0.7662 0.15 0 

162 0.3868 0.50 1 204 0.7273 0.15 1 

186 0.3274 0.00 1 40 0.7232 0.15 0 

193 0.3121 0.70 0 76 0.6183 0.15 1 

229 0.2959 0.50 1 49 0.4253 0.15 1 

142 0.2591 0.70 1 29 0.0005 0.15 0 

52 0.2499 0.50 1 173 0.8575 0.05 1 

159 0.1976 0.70 0 81 0.6496 0.05 1 

85 0.1842 0.70 1 58 0.5034 0.05 0 

137 0.1744 0.50 1 144 0.9107 0.00 1 

201 0.1625 0.00 1 203 0.8531 0.00 1 

133 0.1344 0.50 0 179 0.8011 0.00 0 

226 0.1314 0.70 0 129 0.7192 0.00 1 

131 0.1216 0.30 1 168 0.5733 0.00 1 

75 0.1197 1.00 0 209 0.5565 0.00 0 

128 0.1165 0.50 0 176 0.5068 0.00 1 

206 0.0550 0.00 1 186 0.3274 0.00 1 

102 0.0382 0.50 1 201 0.1625 0.00 1 

41 0.0187 0.00 1 206 0.0550 0.00 1 

29 0.0005 0.15 0 41 0.0187 0.00 1 

Source: Authors’ elaboration 


