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Abstract

This paper provides new theoretical insights into the causes and con-
sequences of indirect tax evasion. I propose a decision-making framework
that contemplates biased perceptions of apprehension probabilities, which
are affected by the environment where the agents operate. This micro-
founded formulation allows for the analysis of how taxation affects tax
evasion (and vice versa) in the aggregate, emphasizing the existing rela-
tionships between the relative size of the shadow economy, tax rates, and
government revenue. It is shown that a traditional Laffer curve (inversely
U-shaped and with a unique maximum) can only exist under certain con-
ditions. The maximum government revenue attainable turns out to be, in
any case, lower than in the absence of tax evasion. Nevertheless, evasion
control policies are proven to be always effective in increasing government
revenue.
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1 Introduction

Since Becker’s (1968) seminal work, economists have systematically studied
criminal behavior using his proposed methodology. Briefly, potential offenders
are considered rational agents who operate in a context of risk or uncertainty
regarding the possible outcomes of their offenses (they might be detected, ap-
prehended, and punished), choosing the delinquent activity level that maximizes
their expected utility.

Tax evasion models first appeared in the 1970s after Allingham and Sandmo’s
(1972) pioneering paper, which was the first application of Becker’s theory to
this specific type of felony. Since then, several models for tax evasion have been
developed and numerous empirical researches have been conducted.

This paper presents an indirect tax evasion model with a decision-making
framework that accounts for some of the empirical observations often overlooked
by the literature.1 The manuscript is structured as follows: Section 2 presents
the issues addressed in this paper, Section 3 develops the model at a single-agent
level, Section 4 analyzes tax evasion in the aggregate, Section 5 simulates an
economy with heterogeneous agents to evaluate the effects of different policy
tools, and Section 6 provides a conclusion.

2 Considerations

Compelling empirical evidence suggests that potential tax evaders usually over-
estimate the objectively low probability of being caught, thus resulting in lower
levels of tax evasion than predicted by traditional models (Alm, 2019; Andreoni
et al., 1998). One possible explanation for this phenomenon is the presence
of biases and heuristics that influence perceived probability distributions over
outcomes.2

Furthermore, decisions regarding tax evasion are significantly influenced by
the social environment (shaped by the taxpayers and the tax authority) in which
they are made. This environment does not only affect the perceived probabilities
for each outcome (Bergman & Nevarez, 2005; Cooter et al., 2008; Scholz &
Pinney, 1995; Sheffrin & Triest, 1992) but also the preferences3 over them (Alm
& McClellan, 2012; Bergman & Nevarez, 2006; Frey & Feld, 2002; Scholz &
Pinney, 1995; Torgler et al., 2008).

In recent years, mainly for the case of income tax evasion, new models have
been formulated to address the mentioned issues. Some of these models focus on
the interactions between agents (degl’Innocenti & Rablen, 2017; Di Gioacchino
& Fichera, 2020, 2022; Fortin et al., 2007; Traxler, 2010), while others place

1The Annex contains two lists with the nomenclature for each type of variable (individual
and aggregate) and also presents the notation I use.

2See Kahneman et al. (1982) or Thaler and Sunstein (2008) for a more in-depth discussion
of those biases and heuristics.

3For instance, the utility level for a certain amount of successful tax evasion may depend
on factors such as how taxpayers are treated by the tax authority or how much trust the
government has earned.
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emphasis on the impact of tax audits (Levaggi & Menoncin, 2016; Ma et al.,
2021). Additionally, some models analyze tax evasion decisions using a non-
expected utility framework (Bernasconi, 1998; Bernasconi & Zanardi, 2004; Frey
& Torgler, 2007; Hokamp & Pickhardt, 2010; Yaniv, 1999). In contrast, the
modern indirect tax evasion theory (Arias, 2011; Besfamille et al., 2009, 2013;
Buccella et al., 2024; Fanti & Buccella, 2021; Goerke, 2017; Goerke & Runkel,
2011) is still mainly concerned with the same issues as in its early stages (Marrelli
& Martina, 1988; Marrelli, 1984; Virmani, 1989). This is, the study of the
relationships between tax evasion, output, and production efficiency under a
determinate market structure.

It may be said that this split in new theoretical modeling is because the
empirical findings mentioned are only valid for individuals and not for firms.
However, firm decisions are taken by individuals operating within an organiza-
tional structure (Coase, 1937, 1988). Therefore, it might not be appropriate
to claim that individuals are perfectly rational and well-informed when making
indirect tax evasion decisions in a company but not when evading income tax
on their personal earnings.4

Even if it is accepted that the aforementioned empirical insights ought to be
incorporated into indirect tax evasion models, a challenging issue to overcome is
the incongruity that arises between tax evasion decisions and production deci-
sions when irrational formation of probability perceptions is taken into account.
It would be inconsistent to accept that the former are made under total uncer-
tainty (leading to the formation of biased probabilities of detection on which
an agent’s behavior relies) at the same time that the latter take place in a
context of perfect and complete information (as assumed by traditional market
structures).

One potential solution is to separate tax evasion decisions from production
decisions and focus solely on the former. Although this would imply the absence
of a market structure, it does not necessarily mean that revenue is to be taken as
given. It could be treated as an endogenous variable, influenced by factors such
as tax rates. Furthermore, this approach would allow for a broader aggregate
analysis, as it overcomes certain limitations imposed by each market structure.5

Certainly, if probability of detection or concealment costs depend on firm
size, the approach would contradict the well-known separability conclusions of
indirect tax evasion theory (Arias, 2011; Yaniv, 1995). However, it is worth
noting that tax evasion decisions and production decisions are not made simul-
taneously, as it is usually6 assumed, but rather at different times. Therefore, it
might not be incorrect to focus on the second stage of the problem, this is, on
how much revenue is understated, rather than how it is generated (even though
this may affect tax evasion decisions).

4As an example, Busenitz and Barney (1997) show that both managers of large corporations
and sole entrepreneurs, yet to a different extent, are prone to misperceive probabilities due to
behavioral biases when facing uncertainty.

5As an example, it would take into account the existence of heterogeneous agents, which
is not possible in a market of perfect competition.

6For a two-stage model, see Besfamille et al. (2009) for example.
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3 The model

3.1 Basic approach

For a one-period time horizon, a rational7 and risk-neutral8 agent whose gross
sales revenue is given by y must decide the proportion a of that revenue to
conceal from the tax authority, by whom is levied a tax τ = (t/100) y where
0 ≤ t ≤ 100.9

When evasion is a positive quantity, the agent must face concealment costs,
which are denoted by ς = ς(a, y, c) where the parameter c indicates the signifi-
cance of concealment costs. This function satisfies ςa, ςy, ςc > 0 and ςaa ≥ 0.

The agent perceives a probability p = p(a, y, υ, ω, γ) of being detected. The
variables υ, ω, and γ represent, respectively, the influence of behavioral biases,
perceived behavior of other agents, and perceived behavior of the tax authority
on the aforementioned probability. It is assumed that pa, py > 0, paa ≥ 0, and
pυ, pω, pγ < 0.

If caught, the agent is fined a sum χ = χ(a, y, x) for the offense. The param-
eter x indicates the severity of the penalties legislated. We have χa, χy, χx > 0
and χaa ≥ 0.

When evasion is attempted, the subjective expected net revenue can be
expressed as:

ye = p [(1− t/100) y − χ− ς] + (1− p) [(1− t/100) (y − ay) + ay − ς]

Or, what is equivalent:

ye = (1− t/100) y + (t/100) (1− p) ay − pχ− ς.

Subtracting (1− t/100)y from both sides and denoting π = ye − (1− t/100)y as
the expected tax evasion profit, we get:

π = (t/100) (1− p) ay − pχ− ς. (1)

Equation (1) shows that π has three components that distinguish it from
(1− t)y: Expected additional revenue, expected fine, and concealing costs. We
highlight that π=0 if a = 0. The agent will choose a∗ so as to maximize π. If
the agent considers that the decision will neither affect other agents’ behavior
nor the tax authority’s behavior, Kuhn-Tucker optimization with 0 ≤ a ≤ 1 and
π ≥ 0 as constraints (see the Appendix) yields the following solution:

7By this, we that the agent maximizes its subjective expected utility (Savage, 1954). Al-
though decision-making frameworks such as the prospect theory or bounded rationality in any
of its forms are available, I believe that the complexity involved in using them outweighs the
benefits.

8Although it is common knowledge that agents tend to be risk-averse, Arias (2005) has
shown that assuming risk neutrality and incorporating concealing costs (which act similarly
to a risk premium) leads to similar results as those models that assume risk aversion.

9Note that this tax is expressed in terms of the after-tax output value. If a pre-tax charge
ρ is modeled, as would be the case with a retail sales tax, replace t = ρ/(1 + ρ).
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a∗ =

 1 if πa > 0 ∀a ∈ (0, 1)
θ if πa = 0 for some a ∈ (0, 1)
0 if πa < 0 ∀a ∈ (0, 1)

(2)

where

θ =
1

pa

[
(1− p)− ςa + paχ+ pχa

(t/100) y

]
.

Now, let z = ay represent the amount of tax evasion. Its optimal value is
given by:

z∗ =

 1 if πa > 0 ∀z ∈ (0, y)
ψ if πa = 0 for some z ∈ (0, y)
0 if πa < 0 ∀z ∈ (0, y)

(3)

where

ψ =
y

pa

[
(1− p)− ςa + paχ+ pχa

(t/100) y

]
.

Regarding comparative statics, when y is held constant, the effects of any
other variable on a∗ or z∗ have the same direction. The results for z∗ are:

∂z∗

∂x
= − 1

pa

(
paχx + pχax

t/100

)
(4a)

∂z∗

∂c
= − 1

pa

(
ςac
t/100

)
(4b)

∂z∗

∂t
=

y

pa

[
ςa + paχ+ pχa

(t2/100) y

]
(4c)

∂z∗

∂υ
= − y

pa

[
paυθ + pυ +

paυχ+ pυχa

(t/100) y

]
(4d)

∂z∗

∂ω
= − y

pa

[
paωθ + pω +

paωχ+ pωχa

(t/100) y

]
(4e)

∂z∗

∂γ
= − y

pa

[
paγθ + pγ +

paγχ+ pγχa

(t/100) y

]
. (4f)

When 0 < θ < 1, an increase in t, υ, ω or γ, or a decrease in c or x encourages
higher tax evasion levels in both absolute and relative terms.

However, when there are variations in y, the effects on a∗ and z∗ might have
different directions, because

∂a∗

∂y
= − 1

pa
(payθ + py +B) (5a)

∂z∗

∂y
= − y

pa
(payθ + py +B) + θ, (5b)

where B is equal to(
ςay + payχ+ paχy + pyχa + pχay

)
y − (ςa + paχ+ pχa)

(t/100) y2
.
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There could be, simultaneously, a decrease in the proportion of the gross sales
revenue concealed and an increase in the amount hidden (or vice versa). With-
out stronger assumptions, the impact of y on a∗ and z∗ remains ambiguous.10

3.2 Endogenous revenue approach

So far, it has been assumed that the tax rate do not affect gross sales revenue.
This may be unrealistic since it ignores either or both possible tax shifting and
changes in the relative commodity demand generated by variations in the tax
rate. To address this problem, now I consider a scenery where y is affected by
t (this is, by tax policy) but not by the decisions of the potential tax evader.

Let y = y(t, ε) denote the gross sales revenue as a function of the tax rate
t and all other non-tax-related factors ε affecting it. The main implication is
that now we have p = p[a, y(t), υ, ω, γ], χ = χ[a, y(t)], and ς = ς[a, y(t)]. Using
the chain rule in Equations (2) and (3) to derive θ and ψ with respect to t, the
new results are, respectively:

∂a∗

∂t
= − 1

pa

[
(1 + θ) pyyt +Dyt −

ςa + paχ+ pχa

(t2/100) y

(
1 + yt

t

y

)]
(6a)

∂z∗

∂t
= − y

pa

[
(1 + θ) pyyt +Dyt −

ςa + paχ+ pχa

(t2/100) y

(
1 + yt

t

y

)]
+ θyt, (6b)

where

D =
ςay + payχ+ χy + pyχa + pχay

(t/100) y
.

The effects of a variation in t are unclear, as they largely depend on yt, for
which we cannot make any assumption.11 However, it is worth noting that a
sufficient condition for a∗t > 0 might be −1 < η < 0, where η = yt(t/y) denotes
the elasticity between gross sales revenue and tax rates. Only if −1 < η < 0
and θ/(1− θ) < pyy/pa we can ensure z∗t .

As it is shown in the following section, these ambiguities are far from ir-
relevant. They shape the relationships between the relative size of the shadow
economy, government revenue, and tax rates. Moreover, to a great extent, they
determine whether or not a traditional Laffer curve emerges.

4 Aggregate analysis

4.1 Assumptions

Consider a closed economy consisting of n agents, where the total gross sales
revenue is denoted by Y =

∑n
i=1 yi and a tax T = (t/100)Y is levied on it.

10In Section 5.1, I introduce a linear version of the model to study these relationships in
further detail.

11Even if it is assumed that no variations in relative demand take place when t increases
or decreases, y might still be affected in two opposite directions by changes in quantities sold
and after-tax prices.
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The total amount of evasion is represented by Z =
∑n

i=1 zi. Evasion is partially

discovered by the tax agency, resulting in a sum (t/100)
∑n−j

i=1 zi +
∑n−j

i=1 Ci of
additional government revenues, where n − j is the number of agents caught
and fined. I assume that it is allocated in its totality to cover the costs of the
audits, in order to focus on taxation.

4.2 Government revenue in the presence of tax evasion

4.2.1 Mathematical expressions

Under the assumptions of Section 4.1, government revenue can be expressed as:

R =
t

100
(Y − Z) ,

If we extract Y from (Y − Z) and use ϕ = Z/Y to denote the relative size of
the shadow economy, either discovered or not, we can rewrite R as follows:

R =
t

100
Y (1− ϕ) . (7)

Regarding the properties of ϕ as a function, its first and second derivative
with respect to t are, respectively:

∂ϕ

∂t
=

1

Y
(Zt − ϕYt) (8a)

∂2ϕ

∂t2
=

1

Y

[
−Yt
Y

(Zt − ϕYt) + (Ztt − ϕYtt)− ϕtYt

]
. (8b)

If t is taken as given, the sufficient condition for ϕt > 0 is Zt > ϕYt, since
0 ≤ ϕ ≤ 1. According to Equations (6a) and (6b), it is guaranteed if 0 < ηi < 1
and θi/(1 − θi) < py(i)yi/pa(i) ∀i = 1, 2, ..., n. Regarding ϕtt > 0, ensuring it
requires Zt > ϕYt, Ztt > Ytt, and Yt ≤ 0.

4.2.2 Breaking down the effects of a tax cut

Relying on how government revenue has been defined, the effects of a tax cut
in the presence of tax evasion can be broken down in an alternative12 way.

According to Laffer (2004), if there is no tax evasion, reducing the tax rate
will have two opposing effects on government revenue. It will reduce them per
unit of the tax base (arithmetic effect), but, at the same time, it will increase
the tax base (economic effect).

When tax evasion is present and the tax rate falls from t0 to t1, although
Y increases in δ units, which is the gross economic effect, a portion ϕ1δ of this
increase is not reflected in a higher effective tax base since the agents conceal it
from the authorities (see Equation (7)), hence the net economic effect is given
by (1− ϕ1)δ.

12The distinction between the compliance effect and the income effect has probably been
the most accepted in the tax evasion literature. See (Takáts & Papp, 2008).
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4.3 First-order condition, second-order condition and unique-
ness of the maximum

The first and second-order conditions that a tax rate t∗ must satisfy in order to
maximize R = (t/100)(Y − Z) are, respectively:

∂R

∂t
=

1

100
[(Y − Z) + t (Yt − Zt)] = 0

∂2R

∂t2
=

1

100
[2 (Yt − Zt) + t (Ytt − Ztt)] < 0.

Note that Y ≥ Z ∀t ∈ [0, 100]. Now, if Zt > Yt and Ztt > Ytt are satisfied
∀t ∈ [0, 100], then both expressions Y − Z and −t(Yt − Zt) will always be non-
negative, but the former will decrease and the latter will increase as t grows.
Under those circumstances, −t(Yt − Zt) will be zero when t = 0 and positive
when t = 100. Provided Y −Z positive when t = 0 and null when t = 100, there
can only exist one critical point t∗ ∈ (0, 100) where the first-order condition is
met, which will also be a maximum because the second-order condition will also
be true. Therefore, a traditional Laffer curve for government revenue from gross
sales revenue will exist.13 Furthermore, it is possible to rewrite the first-order
condition more elegantly by solving for t and considering ϕ = Z/Y :

t∗ =
Y (1− ϕ)

Zt − Yt
.

Replacing with this solution in Equation (7) yields R∗, which is the maximum
potential government revenue in nominal terms:

R∗ =
Y 2 (1− ϕ)

2

100 (Zt − Yt)

4.4 The nominality issue

In could be argued that t∗ may not maximize government revenue in real terms
due to the impact of tax rate adjustments on prices. Since the model does not
deal with prices, we can only aim to maximize government revenue as a propor-
tion of the total gross sales revenue of the economy (henceforth in proportional
terms). Consider r = R/Y = (t/100)(1−ϕ). In order to maximize this function,
following first and second-order conditions must be satisfied:

∂r

∂t
=

1

100
[(1− ϕ)− tϕt] = 0

∂2r

∂t2
= − 1

100
(2ϕt + tϕtt) < 0.

13It must be highlighted, however, that without further assumptions about the characteris-
tics of the individual functions involved or the distribution of the agents, it is not possible to
ensure that those conditions will be held.
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Provided Y > Z if t = 0 and Y = Z if t = 100, then 1 − ϕ > 0 when
t = 0 and 1 − ϕ = 0 when t = 100. If in addition ϕt > 0 and 2ϕt > (−tϕtt)
∀t ∈ [0, 100], which requires Ztt > Ytt and Yt ≤ 0 whenever 0 ≤ t ≤ 100 (see
Equations (8a) and (8b)), r will have a unique maximum t∗∗ ∈ (0, 100).14 This
maximum may be expressed as:

t∗∗ =
(1− ϕ)

ϕt
.

In this scenario, since r = (t/100)(1 − ϕ), the maximum potential government
revenue in proportional terms is given by:

r∗∗ =
(1− ϕ)

2

100ϕt
.

4.5 Implications

Various results from the aggregate analysis, which are valid in both nominal
and proportional terms, ought to be highlighted. The proofs for each of them
can be found in the Appendix.

Proposition 1 In the presence of tax evasion, a shadow economy whose relative
size increases whenever the tax rate is raised is a necessary condition in order
to guarantee the existence of a traditional Laffer curve, yet not a sufficient one.

Proposition 2 In the presence of tax evasion, for any given tax rate, gov-
ernment revenue is always lower than in a no-evasion situation. Additionally,
it tends to decrease as tax evasion increases due to non-revenue-related factors.
Therefore, the position of the curves R(t) and r(t) can be affected by the evasion
control policy.

Proposition 3 In the presence of tax evasion, if the existence of a traditional
Laffer curve is guaranteed, then both the tax rate for which it is maximum
and the maximum potential government revenue are lower compared to the no-
evasion situation.

To the best of my knowledge, although some models of indirect tax evasion
(Kanniainen & Pääkkönen, 2004; Kotamäki, 2017; Palda, 1998; Vasilev, 2018;
Vogel, 2012) and linear income tax evasion (both old (Feige & McGee, 1983;
Peacock & Shaw, 1982; Ricketts, 1984) and not-so-old (Besfamille, 2008; Busato
& Chiarini, 2013; Chang et al., 1999; Méder et al., 2012)) have partially pro-
vided those results either explicitly or implicitly, a systematic and simultaneous
presentation of them have not taken place until now.

14If Zt > Yt, Yt < 0, and Ztt > Ytt are satisfied ∀t ∈ [0, 100], then both expressions 1 − ϕ
and tϕt will always be non-negative, but the former will decrease and the latter will increase
as t grows. Under those circumstances, tϕt will be zero when t = 0 and positive when t = 100.
Provided 1 − ϕ positive when t = 0 and null when t = 100, there can only exist one critical
point t∗∗ ∈ (0, 100) where the first-order condition is met, which will also be a maximum
because the second-order condition will also be true.
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5 Simulation

5.1 A particular version of the model

To avoid unnecessary complexity, a linear version of the model (with a closed
solution) is used in the simulation. Although its stronger assumptions, it
allows for an interesting interaction between y and γ. For each agent, let
pi = zi/(υiωiy

γ
i + zi) be the perceived probability of detection, χi = xzi be

the fine that would be imposed for the offense if detected, and ςi = cizi be the
concealment costs, where x, υi, ωi, ci > 0, and γ < 1. Note that pi is naturally
bounded between 0 and 1, and the assumption paa(i) ≥ 0 for all i = 1, 2, ..., n
has been relaxed.

Why γ < 1? In this simplified version of the model, the partial derivative of
pi with respect to yi is:

(1− γ) aiυiωiy
γ
i

(υiωiy
γ
i + aiyi)

2 .

As the assumption py(i) < 0 ∀i = 1, 2, ..., n ought not to be forgone, the condition
γ < 1 must be satisfied. Keeping it seems reasonable because it implies that the
perceived likelihood of being caught for a fixed proportion of evasion increases
as gross sales revenue raises.15 It is worth noting that if γ < 0, the perceived
likelihood of being caught for a fixed amount of evasion increases as gross sales
revenue raises.16

Replacing in Equation (1) with the stronger assumptions yields πi = (t/100−
ci)aiyi − [(t/100 + x)a2i y

2
i ]/(υiωiy

γ
i + aiyi).

17 Doing the same replacement in
Equation (3) we obtain:

z∗i =

 yi if t/100 ≥ hi
ψi if ci < t/100 < hi
0 if t/100 ≤ ci

where

ψi =

√x+ t/100

x+ ci
− 1

 υiωiy
γ
i

and

hi = (x+ ci)

(
y1−γ
i

υiωi

)2

+ 2 (x+ ci)

(
y1−γ
i

υiωi

)
+ ci

15Roughly speaking, this means that when a small business and a blue chip company conceal
the same proportion of their revenues, all other variables equal, the former will always perceive
a lower probability of detection than the latter.

16Denoting those elements as z̃i and p̃i to avoid any possible misunderstanding, we have

∂p̃i/∂yi = −γ
(
υiωz̃iy

γ
i

)
/yi

(
υiωiy

γ
i + z̃i

)2
. In intuitive terms, γ < 0 means that a small

business will always perceive a lower probability of detection than a blue chip company were
they to conceal the same quantities from the tax authority, all other variables equal.

17Under these assumptions and taking hi as defined at the end of this page, πa(i) > 0 ∀a ∈
(0, 1) only if t/100 > hi, πa(i) < 0 ∀a ∈ (0, 1) only if t/100 < ci, and ∃!a ∈ (0, 1) such that
πa(i) = 0 only if ci < t/100 < hi. Note that if t/100 = ci, then πa(i) = 0 when a = 0, and if
t/100 = hi, then πa(i) = 0 when a = 1. Additionally, πaa(i) < 0 ∀a ∈ [0, 1].
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.
If 0 < γ < 1, the optimal amount of evasion decreases in relative terms but

increases in absolute terms as gross sales revenue does. If γ < 0, the optimal
amount of evasion decreases in both relative and absolute terms as gross sales
revenue increases.

5.2 Distributional assumptions

For every agent i = 1, 2, ..., n, the relationship between gross sales revenue and
the tax rate is assumed to be given by yi = qit

2 + sit + ỹi, where qi, si, ỹi are
constants, and ỹi > 0.

We assume that the variables ỹi, υi, ωi, and ci follow a multivariate normal
distribution W ∼ N (µ,Σ), where

W =


ỹi
υi
ωi

ci

, µ =


5000
6000
1800
0.01

, Σ = V arCov(W).

For a meaningful characterization of Σ, define σ(W) as the vector of standard
deviations of W and Corr(W) as the correlation matrix of W. Therefore, we
have:

σ(W) =


1000
500
300
0.001

, Corr(W) =


1 −0.6 −0.4 0.7

−0.6 1 0.8 −0.2
−0.4 0.8 1 −0.3
0.7 −0.2 −0.3 1

 .

Two different cases are presented. In the first one (henceforth Case 1) it is
assumed that qi = −mi, while in the second one (henceforth Case 2) the as-
sumption is qi = mi. In both cases, mi ∼ logN (1, 0.25) and si ∼ logN (1, 0.25).

5.3 Results

n = 1000 has been set for data generation. Descriptive statistics of the behav-
ioral parameters obtained are presented in Table 1.

Figure 1 shows the relationship between total gross sales revenue and the rate
for each case. In Case 1, Y decreases whenever t increases, while the opposite
occurs in Case 2. Although these curves determine, to a great extent, how Z,
ϕ, R, and r are related to t, note that these relationships cannot be affected by
changes in the parameters of the evasion control policy (γ and x).

In Figure 2, the results for Case 1 are shown. The level of tax evasion
is inversely related to the variable t, following an inverse U-shaped pattern.
The share of the shadow economy tends to increase as the tax rate raises, and
traditional Laffer curves in both nominal and proportional terms are observed
despite the necessary conditions for their existence not being met. For any given
tax rate, a reduction in γ or an increase in x can simultaneously reduce total
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Table 1

tax evasion, decrease the share of the shadow economy, and increase government
revenue in both nominal and proportional terms.

Figure 3 allows us to see the results for Case 2. As the tax rate increases, the
level of tax evasion also increases. The relative size of the shadow economy shows
an inverse U-shaped relationship with the tax rate, and no Laffer curve arises in
either nominal or proportional terms. It is to be highlighted that for any given
tax rate, it is again possible to simultaneously reduce total tax evasion, decrease
the relative size of the shadow economy, and increase government revenue (in
both nominal and proportional terms) by setting higher values for x or lower
values (higher in absolute value) for γ.
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Figure 1
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(a) (b)

(c) (d)

Figure 2
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(a) (b)

(c) (d)

Figure 3
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6 Concluding remarks

A model that recognizes the uncertainty faced by the decision-maker when try-
ing to evade a sales tax has been developed. Its most important feature is that
beliefs about the probability of being detected and caught are influenced by
behavioral biases, government activity, and other agents’ behavior. This frame-
work has enabled an analysis of the effects of tax rates on the shadow economy
and government revenue. Special attention has been given to the conditions
under which, in the presence of indirect tax evasion, a traditional Laffer curve
(in either nominal or proportional terms) emerges. Moreover, the implications
of its existence have been studied in detail.

It is important to recognize that certain issues have remained beyond the
scope of the presented mathematical formalization. The potential impact of
tax evasion on gross sales revenue, whether through adjustments in prices or
quantities, has not been considered. The framework does not go beyond one
single period of time, and it neglects the influence of moral values or the possible
substitution between tax avoidance and tax evasion.18 Lastly, oversimplifying
assumptions might have been made about tax audits, such as binary outcomes
for each level of evasion or perfect coverage of their cost by the additional income
that they entail.19

Notwithstanding the limitations of this theory, its validity is subject to future
empirical testing. However, it will be challenging in a field where the lack of
data and its reliability have always been a problem (Alm, 2019; Andreoni et al.,
1998; Cowell, 1985). One potential approach for future empirical research is to
collect data through experimental economics.

18In recent work (degl’Innocenti & Rablen, 2017; degl’Innocenti et al., 2022), simultaneous
decisions of tax evasion and tax avoidance have been modeled. This could be an interesting
extension.

19Sanyal et al. (2000) present a simple framework in which corruption leads to non-binary
outcomes, while in Arozamena et al. (2008), the audit cost determines whether or not the
government commits to enforcing the tax law. Future extensions in any of these directions
seem both plausible and worthwhile.
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Méder, Z. Z., Simonovits, A., & Vincze, J. (2012). Tax Morale and Tax Evasion:
Social Preferences and Bounded Rationality. Economic Analysis and
Policy, 42 (2), 171–188. https://doi.org/10.1016/S0313-5926(12)50019-
6

Palda, F. (1998). Evasive ability and the efficiency cost of the underground
economy. Canadian Journal of Economics, 31 (5), 1118–1138. https :
//doi.org/10.2307/136462

19



Peacock, A., & Shaw, G. K. (1982). Tax evasion and tax revenue loss. Public
Finance = Finances publiques, 37 (2), 269–278.

Ricketts, M. (1984). On the Simple Macroeconomics of Tax Evasion: An Elab-
oration of the Peacock-Shaw Approach. Public Finance = Finances
publiques, 39 (3), 420–24.

Sanyal, A., Gang, I., & Goswami, O. (2000). Corruption, Tax Evasion and the
Laffer Curve. Public Choice, 105 (1-2), 61–78. https://doi.org/10.1023/
A:1005105822911

Savage, L. J. (1954). The foundations of statistics. John Wiley & Sons.
Scholz, J. T., & Pinney, N. (1995). Duty, fear, and tax compliance: The heuristic

basis of citizenship behavior. American Journal of Political Science,
39 (2), 490–512. https://doi.org/https://doi.org/10.2307/2111622

Sheffrin, S. M., & Triest, R. K. (1992). Can Brute Force Deterrence Back-
fire? Perceptions and Attitudes in Taxpayer Compliance. In J. Slem-
rod (Ed.), Why People Pay Taxes: Tax Compliance and Enforcement
(pp. 193–218).
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Annex

Individual variables

y: Gross sales revenue.
τ : Tax levied on gross sales revenue.
t: Tax rate as a proportion of gross sales revenue (in after-tax terms).
a: Proportion of gross sales revenue concealed.
a∗: Optimal proportion of gross sales revenue concealed (the interior solution is
denoted as θ).
z: Amount of gross sales revenue concealed.
z∗: Optimal amount of gross sales revenue concealed (the interior solution is
denoted as ψ).
ς: Concealment costs.
c: Indicates the significance of concealment costs.
p: Perceived probability of detection.
υ: Influence of behavioral biases on the perceived probability of detection.
ω: Influence of other agents’ perceived behavior on the perceived probability of
detection.
γ: Influence of the perceived behavior of the tax authority on the perceived
probability of detection.
χ: Fine imposed if evasion is detected.
x: Indicates the severity of the penalties legislated.
ye: Expected net revenue.
π: Expected tax evasion profit.
η: Elasticity of gross sales revenue with respect to the tax rate.
ε: Non-tax related factors affecting gross sales revenue.

Aggregate variables

Y : Total gross sales revenue.
T : Total tax levied on gross sales revenue.
Z: Total amount of tax evasion.
ϕ: Relative size of the shadow economy.
R: Government revenue.
R∗: Maximum potential government revenue in nominal terms.
t∗: Tax rate that maximizes government revenue in nominal terms.
r: Government revenue as a proportion of total gross sales revenue.
r∗∗: Maximum potential government revenue as a proportion of total gross sales
revenue.
t∗∗: Tax rate that maximizes government revenue as a proportion of total gross
sales revenue.
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Notation

Unless a remarkable result is to be displayed, the partial derivative of one vari-
able with respect to another is denoted by using the latter as a subscript. For
example, py represents the first derivative of the perceived probability of detec-
tion with respect to gross sales revenue.

From the aggregate analysis onward, I use the sub-index i to indicate that I
am referring to an individual variable. For instance, yi denotes the gross sales
revenue of agent i. To avoid misunderstandings, when referring to the partial
derivative of an individual variable with respect to another individual variable,
I use a subscript containing the latter accompanied by i in parentheses. As an
example, py(i) is the first derivative of the perceived probability of detection
with respect to gross sales revenue for agent i.
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Appendix

Kuhn-Tucker Optimization Problem

The problem is:

max
a

π =
t

100
(1− p)ay − pχ− ς s. t. 0 ≤ a ≤ 1, π ≥ 0.

The Lagrangian function that we need to maximize is written in the following
way:

L(a, λ1, λ2, λ3) = (1 + λ3)π + λ1a+ λ2(1− a),

where λ1, λ2, and λ3 are the Lagrange multipliers associated with each of the
constraints.

The conditions of stationarity, primal feasibility, dual feasibility, and com-
plementary slackness are, respectively:

∂L
∂a

= (1 + λ3)πa + λ1 − λ2 = 0 (A1)

0 ≤ a ≤ 1, π ≥ 0 (A2)

λ1 ≥ 0, λ2 ≥ 0, λ3 ≥ 0 (A3)

λ1a = 0, λ2(1− a) = 0, λ3π = 0. (A4)

This problem has three possible solutions:
i) Interior solution: It occurs when πa = 0 for some a ∈ (0, 1). Considering
(A3) and (A4), we require λ1, λ2 = 0, λ3 ≥ 0. Note that (A1) will be satisfied
∀λ3 ∈ R+. As demonstrated later on, it consists on a unique maximum where
π > 0 is satisfied.
ii) Total evasion solution: It arises if πa > 0 ∀a ∈ (0, 1). Given the con-
straints from (A2), the maximum feasible value of π is reached when a = 1,
where π > 0 is ensured since π = 0 when a = 0. Due to (A3) and (A4), we need
λ1, λ3 = 0, λ2 ≥ 0. Regarding (A1), as πa ≥ 0 for a = 1, ∃λ2 ∈ R+ such that
πa − λ2 = 0.
iii) No-evasion solution: In this case, πa < 0 ∀a ∈ (0, 1). Considering the
constraints from (A2), the maximum feasible value of π is reached when a = 0,
resulting in π = 0. Because of (A3) and (A4), it is necessary that λ2 = 0 and
λ1, λ3 ≥ 0. In reference to (A1), given that πa ≤ 0 for a = 0, ∃λ1, λ3 ∈ R+ such
that (1 + λ3)πa + λ1 = 0.

Now, I prove that if an interior solution θ exists, it is a unique maximum
that satisfies π > 0. Taking into account that

∂π

∂a
=

ty

100
(1− p− paa)− pχa − paχ− ςa.
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We have

∂π

∂a
= 0 ⇐⇒ a = θ =

1

pa

[
(1− p)− ςa + paχ+ pχa

(t/100)y

]
.

Also considering that

∂2π

∂a2
= − 1

pa

(
paaθ +

Caa + paaX + 2paXa + pXaa

(t/100) y

)
− 1 < 0 ∀θ ∈ (0, 1),

it is clear that θ is a maximum. It is also unique because if two critical points
θ1, θ2 were to exist, at least one of them should be either a minimum or an
inflection point, which would imply πaa ≥ 0 for some θ ∈ (0, 1) (i.e., a contra-
diction). Recalling that π = 0 when a = 0, it is easy to conclude that π > 0 if
a = θ.

Finally, the solution to the Kuhn-Tucker optimization problem can be ex-
pressed in the following way:

a∗ =

 1 if πa > 0 ∀a ∈ (0, 1)
θ if πa = 0 for some a ∈ (0, 1)
0 if πa < 0 ∀a ∈ (0, 1)

where

θ =
1

pa

[
(1− p)− Ca + paX + pXa

(t/100) y

]
.

Proof of Propositions 1-3

Proof of Proposition 1
In nominal terms: Assume Y − Z > 0 when t = 0, and Y = Z = 0 when
t = 100. The condition Zt > Yt ∀t ∈ [0, 100] necessarily implies Zt > ϕYt ∀t ∈
[0, 100] since 0 ≤ ϕ ≤ 1, which means ϕt > 0 for all t such that 0 ≤ t ≤ 100.
However, this cannot ensure Ztt > Ytt ∀t ∈ [0, 100], thus R may have more than
one critical point in 0 < t < 100.
In proportional terms: The demonstration is essentially the same. ϕt > 0
∀t ∈ [0, 100] can only satisfy the first-order condition, not the second-order one.

Proof of Proposition 2
In nominal terms: Considering R = t(Y − Z)/100, it is clear that tY/100 >
t(Y − Z)/100 as long as 0 < Z ≤ Y . We also have RZ = −t < 0. Without loss
of generality, consider the case for γ. As we have stated, z∗γ(i) > 0 ∀i = 1, 2, .., n,

hence Zγ =
∑n

i=1 z
∗
γ(i) > 0. Using the chain rule, Rγ = −tZγ < 0.

In proportional terms: The demonstration is analogous since r = t(1−Z/Y ).

Proof of Proposition 3
In nominal terms: The no-evasion situation is a particular case in which en-
suring the existence of a traditional Laffer curve requires Yt, Ytt < 0 ∀t ∈ [0, 100]
since Z,Zt, Ztt = 0 ∀t ∈ [0, 100]. For the comparison of this case to another
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one where Z > 0 ∀t ∈ [0, 100] we need Zt, Ztt > 0 ∀t ∈ [0, 100], otherwise a
traditional Laffer curve would not exist. Now I prove the proposition for:
i) t∗: Let (t∗)0 = −Y0/(Yt)0 if Z = 0, and (t∗)1 = Y1(1 − ϕ)/[(Zt)1 − (Yt)1] if
Z > 0. Assume (t∗)1 > (t∗)0. Since Yt < 0 and 0 < ϕ ≤ 1 ∀t ∈ [0, 100], we have
Y0 > Y1(1− ϕ). Therefore, −(Yt)0 > (Zt)1 − (Yt)1 necessarily needs to be met,
which is equivalent to −(Yt)0 + (Yt)1 > (Zt)1. Because Ytt < 0 ∀t ∈ [0, 100],
−(Yt)0+(Yt)1 < 0 holds. In consequence, (Zt)1 < 0 is required for (t∗)1 > (t∗)2,
which is a contradiction.
ii) R∗: Define (R∗)0 = −(Y0)

2/100(Yt)0 for the no-evasion situation and (R∗)1 =
(Y1)

2(1− ϕ)2/100[(Zt)1 − (Yt)1] for the other case. The same previous contra-
diction will be encountered if it is assumed that (R∗)2 > (R∗)1.
In proportional terms: A traditional Laffer curve in proportional terms can-
not exist in the no-evasion situation because ϕ, ϕt, ϕtt = 0 ∀t ∈ [0, 100], thus
there are corner solutions for both t∗∗ and r∗∗. Having said that, I prove the
proposition for:
i) t∗∗: Let (t∗∗)0 ≈ 100 if Z,Zt, Ztt = 0 ∀t ∈ [0, 100], and (t∗∗)1 = (1 − ϕ)/ϕt
for any other case where a traditional Laffer curve in proportional terms exists.
Solving the algebra, (t∗∗)0 > (t∗∗)1 only if (1−ϕ)/ϕt < 100, which is necessarily
true when a traditional Laffer curve in proportional terms exists since it implies
(t∗∗)1 = [(1− ϕ)/ϕt] ∈ (0, 100).
ii) r∗∗: Let (r∗∗)0 ≈ 1 denote the no-evasion situation and (r∗∗)1 = (1 −
ϕ)2/100ϕt any other case where a traditional Laffer curve in proportional terms
exists. (r∗∗)0 > (r∗∗)1 holds as long as 100/(1−ϕ) > (1−ϕ)/ϕt, which is always
satisfied when 0 < (1− ϕ)/ϕt < 100 because 0 < ϕ ≤ 1.
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